

WEST BENGAL STATE UNIVERSITY

B.Sc. Honours 1st Semester Examination, 2020, held in 2021

MTMACOR01T-MATHEMATICS (CC1)

Time Allotted: 2 Hours

The figures in the margin indicate full marks. Candidates should answer in their own words and adhere to the word limit as practicable. All symbols are of usual significance.

Answer Question No. 1 and any *five* from the rest

- 1. Answer any *five* questions from the following:
 - (a) Evaluate the limit: $\lim_{x \to (\frac{\pi}{2})^+} (\tan x)^{2x-\pi}$
 - (b) If $y = e^{m \sin^{-1} x}$, show that $(1 x^2) y_{n+2} (2n+1)x y_{n+1} (n^2 + m^2) y_n = 0$. Also find $y_n(0)$.
 - (c) Find the interval where the curve $y = e^x(\cos x + \sin x)$ is concave upwards or downwards for $0 < x < 2\pi$.
 - (d) Find the vertical and horizontal asymptotes of the following curve:

$$f(x) = \begin{cases} \frac{(x+1)^2}{x^2 + 4x + 3} & \text{; if } x \neq -1 \text{ or } -3 \\ 0 & \text{; otherwise} \end{cases}$$

- (e) A sphere of radius k passes through the origin and meets the axes in A, B, C. If (α, β, γ) be the centroid of the triangle ABC, then find the value of $\alpha^2 + \beta^2 + \gamma^2$.
- (f) Examine the curve $x = 6t^2$, $y = 4t^3 3t$ for concavity and convexity.
- (g) Find the arc length of the curve $y = \frac{e^x + e^{-x}}{2}$, $0 \le x \le 2$.
- (h) Find the equation of the generating lines of the hyperboloid yz + 2zx + 3xy + 6 = 0 which pass through the point (-1, 0, 3).
- (i) Solve: $(4x^2y 6)dx + x^3dy = 0$
- (j) Test whether the equation $x dx + y dy + \frac{x dy y dx}{x^2 + y^2} = 0$ is exact or not.

Full Marks: 50

 $2 \times 5 = 10$

CBCS/B.Sc./Hons./1st Sem./MTMACOR01T/2020, held in 2021

2. (a) Find the point of inflexion, if any of the curve $x = (\log y)^3$. 4

(b) Trace the curve
$$x^3 + y^3 = 3axy$$
.

3. (a) Prove that the envelope of circle whose centres lie on the rectangular hyperbola $4xy = c^2$ and which pass through its centre is $(x^2 + y^2)^2 = 16c^2xy$.

(b) Find the asymptotes of the curve
$$x^{2}(x+y)(x-y)^{2} + 2x^{3}(x-y) - 4y^{3} = 0.$$
 4

- 4. (a) Assuming evolute as the envelope of normals find the evolute of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$
 - (b) Find the value of *a*, such that $\lim_{x \to 0} \frac{a \sin x \sin 2x}{\tan^3 x}$ is finite. Find the limit. 4

5. (a) If
$$I_{m,n} = \int \cos^m x \cos nx \, dx$$
 then prove that,

$$I_{m,n} = \frac{\cos^{m} x \sin nx}{m+n} + \frac{m}{m+n} I_{m-1,n-1}$$

(b) Find the surface area formed by the revolution of $x^2 + 4y^2 = 16$ about the x-axis. 4

6. (a) Derive the reduction formula for $\int \sec^n x \, dx$ and hence evaluate $\int \sec^7 x \, dx$. 4

- (b) Show that the length of the parabola $y^2 = 4ax$ cut-off by its latus-rectum is $2a[\sqrt{2} + \log(1 + \sqrt{2})]$.
- 7. (a) Discuss the nature of the conic $x^2 + 4xy + y^2 2x + 2y + a = 0$ for different 4 values of 'a'.
 - (b) Determine the nature of the conic $r = \frac{1}{4-5\cos\theta}$. Find the eccentricity, the length 4 of the latus rectum and directrices.
- 8. (a) Show that if a right circular cone has three mutually perpendicular generators, the semivertical angle is $\tan^{-1}\sqrt{2}$.

4

(b) Prove that the central sections of the conicoid $(a-b)x^2 + ay^2 + (a+b)z^2 = 1$ are at right angles and that the umbilics are given by $x = \pm \sqrt{\frac{a+b}{2a(a-b)}}$, y = 0,

$$z = \pm \sqrt{\frac{a-b}{2a(a+b)}} \,.$$

1023

CBCS/B.Sc./Hons./1st Sem./MTMACOR01T/2020, held in 2021

- 9. (a) Prove that the centres of spheres which touch the straight lines y = mx, z = c and y = -mx, z = -c lie on the surface $mxy + cz(1+m^2) = 0$.
 - (b) Find the equation of the cylinder whose generating line is parallel to the *z*-axis 4 and the guiding curve is $x^2 + y^2 = z$, x + y + z = 1.

10.(a) Solve:
$$y(xy+2x^2y^2)dx + x(xy-x^2y^2)dy = 0$$
 4

(b) Solve:
$$\frac{dy}{dx} + \frac{y}{x}\log y = \frac{y}{x^2}(\log y)^2$$
 4

11.(a) Show that the equation of the curve, whose slope at any point (x, y) is equal to $xy(x^2y^2-1)$ and which passes through the point (0, 1) is $x^2y^2=1-y^2$.

(b) Solve:
$$\sec^2 y \frac{dy}{dx} + 2x \tan y = x^3$$
 4

- 12.(a) Prove that $(x+y+1)^{-4}$ is an integrating factor of the equation 4 $(2xy-y^2-y) dx + (2xy-x^2-x) dy = 0$ and hence solve it.
 - (b) Show that the differential equation of the circles through the intersection of the circle $x^2 + y^2 = 1$ and the line x y = 0 is given by

4

3

$$(x^{2} - 2xy - y^{2} + 1) dx + (x^{2} + 2xy - y^{2} - 1) dy = 0$$

- 13.(a) Find the surface area of the reel formed by the revolution of cycloid 3 $x = a(\theta + \sin \theta), y = a(1 \cos \theta)$ about the tangent at the vertex.
 - (b) If $I_n = \int x^n \cos x \, dx$, then prove that

$$I_n = x^n \sin x + nx^{n-1} \cos x - n(n-1) I_{n-2}$$

use this to determine $\int x^5 \cos x \, dx$.

(c) Find the singular solution of
$$9\left(\frac{dy}{dx}\right)^2(2-y)^2 = 4(3-y)$$
.

N.B.: Students have to complete submission of their Answer Scripts through E-mail / Whatsapp to their own respective colleges on the same day / date of examination within 1 hour after end of exam. University / College authorities will not be held responsible for wrong submission (at in proper address). Students are strongly advised not to submit multiple copies of the same answer script.