

WEST BENGAL STATE UNIVERSITY

B.A./B.Sc. Honours 3rd Semester Examination, 2020, held in 2021

CMAACOR07T-COMPUTER APPLICATION (CC7)

DISCRETE STRUCTURE

Time Allotted: 2 Hours

Full Marks: 50

 $2 \times 5 = 10$

The figures in the margin indicate full marks. Candidates should answer in their own words and adhere to the word limit as practicable. All symbols are of usual significance.

GROUP-A

1	Answer	any five	questions	from th	e following	,
1.	Allswei	any jive	questions	nomu	ie ionowing	5.

(a) Give an example of planar and non-planar graph.

- (b) Define Isomorphic graph with an example.
- (c) What is tree?
- (d) What is path?
- (e) Define Euler graph.
- (f) What is tautology?
- (g) What is the no. of regions in a connected planar simple graph with 20 vertices each with a degree of 3?
- (h) Define Pigeonhole Principle.

GROUP-B

		Answer any <i>five</i> questions from the following	$8 \times 5 = 40$
2.	(a)	Define the following with example	2+2+2
		(i) Homeomorphic graph.	
		(ii) Complete bipartite graph.	
		(iii) Cut vertex.	
	(b)	What is the number of vertices in an undirected connected graph with 27 edged, 6 vertices of degree 2, 3 vertices of degree 4 and remaining of degree 3?	2
3.	(a)	Prove that $P(n) = 1^3 + 2^3 + 3^3 + \dots + n^3 = \{n(n+1)/2\}^2$ where $n \ge 1$ [solve by mathematical induction].	4
	(b)	Prove that $5^n - 4n - 1$ is divisible by 16 for $n > = 1$ solve by mathematical induction.	4

CB	C2/1	5.A./B.Sc./Hons./5rd Sem./CNIAACOK0/1/2020, neid in 2021	
4.	(a)	Show that) $\neg p \rightarrow (q \rightarrow r \text{ and }) q \rightarrow (p \lor r \text{ are logically equivalent.}$	4
	(b)	Give an example of	2+2
		(i) A function which is injective but not surjective, and	
		(ii) A function which surjective but not injective.	
5.	(a)	What is power set?	2
	(b)	What is generating function?	2
	(c)	Prove that $3^n > n^2$ for a positive integer $n > = 1$ [solve by mathematical induction].	4
6.	(a)	State two principles of mathematical induction.	2+2
	(b)	Prove by one principle that every positive integer $n \ge 2$ is either a prime or can be written as a product of the primes.	4
7.	(a)	In a class containing 50 students 15 play tennis, 20 play hockey, 20 play cricket, 3 play tennis and cricket, 6 play cricket and hockey and 5 play tennis and hockey. 7 play no game at all. How many play cricket, tennis and hockey.	4
	(b)	$U = \{1, 2, 3, 4, \dots \dots 15\}$	4
		$A = \{2, 4, 6, 8, 10\}$	
		$C = \{3, 7, 8, 11, 15\}$	
		$\mathbf{B} = \{1, 2, 6, 8, 12, 15\}$	
		Find AUB, A \cap B, A' \cup B', A \oplus C	
8.	(a)	Explain conjunction and disjunction with truth table.	2
	(b)	Prove that complete graph K_4 is planar.	2
	(c)	Prove that any connected graph G with <i>n</i> vertices and $(n - 1)$ edges is a tree.	4
9.	(a)	Find the complete solution of the homogeneous recursive relation	4
		$a_n - 4a_{n-1} + 4a_{n-2} = 0$ For $n > = 2$ where $a_0 = 8$, $a_1 = 36$.	
	(b)	Prove the following equivalence $p \equiv (p \land q) \lor (p \land \thicksim q)$.	2
	(c)	What is Hamiltonian path?	2

N.B. : Students have to complete submission of their Answer Scripts through Email / Whatsapp to their own respective colleges on the same day / date of examination within 1 hour after end of exam. University / College authorities will not be held responsible for wrong submission (at in proper address). Students are strongly advised not to submit multiple copies of the same answer script.

-×-

/TT

0 10