

WEST BENGAL STATE UNIVERSITY

B.Sc. Honours 5th Semester Examination, 2020, held in 2021

CMSACOR12T-COMPUTER SCIENCE (CC12)

THEORY OF COMPUTATION

Time Allotted: 2 Hours

Full Marks: 50

 $2 \times 5 = 10$

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable. All symbols are of usual significance.

Answer question number 1 and any *five* from the rest

- 1. Answer any *five* questions from the following:
 - (a) Define Kleene Star with example.
 - (b) Construct a DFA accepting all string *w* over {0, 1} such that the number of 1's in *w* is 3 mod 4.
 - (c) Describe in words the set of all strings expressed by the following: 111(01)*. What will be the lengths of the shortest and the longest strings expressed by it?
 - (d) Convert the following DFA into equivalent regular expression:

- (e) Define Turing machine.
- (f) What is meant by ambiguous grammar?
- (g) Define Context-sensitive grammar.
- (h) State Cook's theorem.
- (i) What is Halting problem?
- 2. Let *L* be a language over $\{0, 1\}$ such that each string starts with a 1 and ends with 2+3+3 a minimum of two subsequent 0's. Construct,
 - (a) Regular expression for *L*.
 - (b) A finite state automata M such that M(L) = L.
 - (c) A regular grammar G such that G(L) = L.
- 3. (a) Construct a Context-free grammar for all palindromes over $\{a, b\}$. 4+4
 - (b) Using Pumping Lemma show that $L = \{a^{i2} | i \ge 1\}$ is not regular.
- 4. (a) Construct a Mealy machine which is equivalent to the following Moore machine 4+4

CBCS/B.Sc./Hons./5th Sem./CMSACOR12T/2020, held in 2021

Present State	Next State		Output
	<i>a</i> = 0	<i>a</i> = 1	
q_0	q_3	q_1	0
q_1	q_1	q_2	1
q_2	q_2	q_3	0
q_3	q_3	q_0	0

(b) Construct a pushdown automata accepting by empty store for the language

$$L = \{a^n b^{2n} \mid n \ge 1\}$$

5. (a) Consider a Context-free grammar G whose productions are: (2+3)+3

 $S \rightarrow aAS \mid a$

 $A \rightarrow SbA \mid SS \mid ba$

- (i) Show that $S \Rightarrow aabbaa$
- (ii) Construct a derivation tree whose yield is aabbaa
- (b) Consider the grammar *G* as:

 $S \rightarrow SbS \mid a$

Show that the grammar *G* is ambiguous.

6. What do you mean by halting problem of Turing machine? Design a Turing 2+6 machine *M* which recognize the language

 $\{1^n \ 2^n \ 3^n \mid n \ge 1\}.$

- 7. Design a Turing machine which can multiply two positive integers. 8
- 8. (a) Construct a Deterministic Finite Automata with reduced states equivalent to the 3+5 regular expression 10+(0+11)0*1.
 - (b) Define an ambiguous grammar? Show that a grammar with following production rules is an ambiguous grammar.

 $S \rightarrow S + S \mid S * S \mid a \mid b$

- 9. (a) Define a Push-down Automata.
 - (b) Construct a Push-down Automata for the language-specific

$$L = \{a^i b^j c^k \mid i, j, k \in \mathbb{N}, i > j\}$$

N.B.: Students have to complete submission of their Answer Scripts through E-mail / Whatsapp to their own respective colleges on the same day / date of examination within 1 hour after end of exam. University / College authorities will not be held responsible for wrong submission (at in proper address). Students are strongly advised not to submit multiple copies of the same answer script.

-×-

2+6