

WEST BENGAL STATE UNIVERSITY

B.Sc. Honours 5th Semester Examination, 2020, held in 2021

ELSACOR12T-ELECTRONICS (CC12)

Time Allotted: 2 Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable. All symbols are of usual significance.

GROUP-A

1. **Answer any** *five* questions from the following:

- (a) Two points A(3, 2, 5) and B(2, -1, 3) are given in the Cartesian system. Obtain a vector from A to B and a unit vector directed from A to B.
- (b) Given the two co-planar vectors:

$$A = 3\hat{i} + 4\hat{j} - 5k$$
$$B = -6\hat{i} + 2\hat{j} + 4k$$

Obtain the unit vector normal to the plane containing vectors.

- (c) State Ampere's Circuital Law.
- (d) State Biot-Savart's Law.
- (e) What is meant by a solenoidal vector?
- (f) Discuss briefly the effect of polarization in capacitor.
- (g) Write down Maxwell's equations in electromagnetic field.
- (h) Distinguish between conduction current and displacement current.

GROUP-B

Answer any six questions from the following $5 \times 6 = 30$

- 2. Write down Maxwell's field equations and explain the physical significance of 5 each.
- 3. Establish the electrostatic boundary conditions for tangential components of 5 electric field and electric displacement at the boundary of two linear dielectrics.
- 4. State Faraday's Law of electromagnetic induction. How did Maxwell improve 1+4 upon the field equation as obtained from Faraday's Law?

Full Marks: 40

 $2 \times 5 = 10$

CBCS/B.Sc./Hons./5th Sem./ELSACOR12T/2020, held in 2021

- 5. Define electric potential. Calculate electric potential due to a charged shell or 1+4 conducting sphere.
- 6. (a) Show that the equation of continuity is contained in Maxwell's equation. 3+2
 - (b) Starting from Maxwell's equation establish Coulomb's Law.
- 7. Derive Poisson's equation from Gauss's law in point form. Verify that the 5 potential field given below satisfies the Laplace's equation.

$$V = 2x^2 - 3y^2 + z^2$$

8. Find the displacement current density within a parallel plate capacitor having a 2+3 dielectric with $\varepsilon_r = 10$, area of plates $A = 0.01 \text{ m}^2$, distance of separation d = 0.05 m. Applied voltage is

$$V = 200\sin 200 t \,.$$

- 9. Given $E = E_m \sin(\omega t \beta t) \hat{a} y$, in free space, find **D**, **B** and **H**. Sketch **E** and **H** at t = 0.
- 10. What is magnetic vector potential? Obtain the magnetic potential **A** when 2+3 $\mathbf{H} = \frac{k}{2}\hat{a}_x$ for z > 0
- 11. State and prove Uniqueness theorem.
 - **N.B.**: Students have to complete submission of their Answer Scripts through E-mail / Whatsapp to their own respective colleges on the same day / date of examination within 1 hour after end of exam. University / College authorities will not be held responsible for wrong submission (at in proper address). Students are strongly advised not to submit multiple copies of the same answer script.

—×—