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Chapter 1

Real Analysis

Syllabus:

1. Real number system, cluster points of sets, closed and open sets, compact sets.

2. Bolzano-Weierstrass property, Heine-Borel property and its applications.

3. Sequences and Series of functions, pointwise convergence, uniform convergence,
absolute convergence. Some tests of convergence.

4. Continuity, uniform continuity.

5. Differentiability of univariate and multivariate functions. Mean value Theo-
rem.

6. Reimann integral and its properties. Reimann-Stieltjes integral.

7. Review of sequence and series of functions. Uniform convergence: term by
term differentiation and integration Power series. Taylor series expansion.

1.1 Exercise

1. Prove that a convergent sequence is bounded. Is the converse true? Justify
your answer.

2. Prove that an uniformly continuous function is continuous but the converse is
not true.
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4 CHAPTER 1. REAL ANALYSIS

3. Give an example of real valued differentiable function defined on R such that
the derivative is not continuous at 0. Justify your answer.

4. Define Open Set in R. Prove that intersection of two open set is also an open
set.

5. Prove that a finite set has no limit point.

6. Give an example of set which is closed as well as open. Justify.

7. Give an example of infinite set which have no limit point.

8. Prove that Q is dense in R.

9. Prove that the sequence {1/n, n ∈ N} is a Cauchy sequence.

10. Prove that product of two odd function is an even function.

11. Define directional derivatives of a real valued function of n variables.

12. Find the directional derivatives of the following function along (1, 1, . . . , 1)
f : Rn → R, such that, f(x1, x2, . . . , xn) = x1 + 2x2 + · · ·+ nxn.

13. Optimize, x2 + y2 + z2 subject to x+ y + z = 3.

1. Give an example of real valued differentiable function defined on R such that
the derivative is not continuous at 0. Justify your answer. 5

2. a) Define a power series and the radius of convergence of the power series? 3
b) Find the radius of convergence of the following series

∑∞
n=1

xn

n!

and
∑∞

n=1
(−x)n

n!
4

c) Find the dimensions of a box of largest volume that can be inscribed in a
unit sphere. 3

3. Prove that a convergent sequence is bounded. Is the converse true? Justify
your answer. 5

4. Give an example of open set which has no limit points, Justify.

5. a) A set E subset of X is called dense in X if every point of X is a limit point
of E. Prove that Q is dense in R. 4
b) Prove that an uniformly continuous function is continuous but the converse
is not true. 3
c) Prove that product of two odd function is an even function. 3



1.1. EXERCISE 5

6. a) Prove by definition, without using any standard result, sinx → 1 as x →
π/2 3
b) Prove that the sequence {1/n, n ∈ N} is a Cauchy sequence. 3
c) Find the extreme points of the function f = x3

1 + x3
2 + 2x2

1 + 4x2
2 + 6.

4

7. a) Define directional derivatives of a real valued function of n variables. 3
b) Find the directional derivatives of the following function along (1, 1, . . . , 1)
f : Rn → R, such that, f(x1, x2, . . . , xn) = x1 + 2x2 + · · ·+ nxn. 4
c) Optimize, x2 + y2 + z2 subject to x+ y + z = 3. 3

8. a) Prove that a finite set has no limit point. 4
b) Give an example of set which is closed as well as open. Justify. 3
c) Give an example of infinite set which have no limit point. 3

9. a) A set E subset of X is called dense in X if every point of X is a limit point
of E. Prove that R \Q is dense in R. 3
b) Prove that a monotonically decreasing sequence which is bounded below
converges. 3
c) Prove that, uniform continuity implies continuity. Give an example of
continuous function which is not uniformly continuous. 4

10. a) Prove by definition, f(x) = x2, ∞ < x < ∞, is a continuous function. 3
b) Prove that the sequence {2/n2, n ∈ N} is a Cauchy sequence. 3
c) Prove that the union of finite closed sets is a closed set. 4

11. a) Prove that, the open interval (0, 1) is an open set. 3
b) Give an example of set which has only two limit points. Justify your answer.
4
c) Prove that the harmonic series diverge to ∞. 3

12. a) Give an example of set which is not closed as well as not open. 2
b) State Heine Borel property of compact subsets of real numbers. 2
c) Give an example of two non-convex subset in R2 such that whose union is
a convex set. Justify your answer. 3
d) Prove that the sequence {1/n2, n ∈ N} is a convergent sequence. 3

13. a) Define open set. Give two examples of open set? 3
b) Find points of inflection, max. and min of the following function

f(x) =


x4 if − 4 < x ≤ 2,
x if 2 < x ≤ 4,
4 if 4 < x ≤ 6,
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3
c) Prove that an open interval is an open set. 4

14. a) Prove that any closed interval can be expressed as intersection of infinitely
many open intervals. 4
b) Define a series. When it is called convergent? 3
c) Prove that the sequence {2/n, n ∈ N} is a convergent sequence. 3

15. a) Give an example of power series whose radius of convergence is 1. 2
b) Give an example, with Justification, of closed set which has no limit points.
2
c) Prove that, the open interval (a, b) is an open set. 3
d) Give an example of infinite set has only one limit point. Justify. 3

Group B: Answer any 4 questions. 5× 4 = 20

16. a) State sandwitch theorem on limit.

Using this theorem prove that limn→∞(3n + 2n)
1
n = 3. 3

b) Give an example of two convex subset in R2 such that whose union is a not
a convex set. Justify your answer. 2

17. a) Define compact set. Give examples. 2
b) Write [a, b] as union and complement of the following type of intervals (a, b],
Where a < b two real numbers. 3

18. a) Give an example of set which is not closed also not open. 2
b) Prove that a monotonically decreasing sequence which is bounded below
converges. 3

19. Find the infinite sum: 1
1.2.3

+ 1
2.3.4

+ 1
3.4.5

+ · · ·+ · · ·∞.

20. Let f : I → R is a differentiable function and c ∈ I. If f ′(c) > 0 then prove
that f is increasing at c. Show that the converse is not true.

21. When a series is called convergent. Find the lim 1.2.3...(2n−1)
2.4.6....2n

as n → ∞.



Chapter 2

Complex Analysis

1. a) What do you mean by an analytic function? State and prove a necessary
condition for a complex valued function to be analytic. Give an example to
show that the condition is not sufficient. 7
b) Define open disc in a complex plane and give an example. 3

2. a) If f(z)

=

{ |z|4
z3

if z ̸= 0
0 if z = 0,

then show that the Cauchy-Riemann equations are satisfied at z = 0 although
the derivative of f does not exist at z = 0. 7

b) Find modulus and amplitude of the Complex number −2i − 2. Find the
value of ii. 3

3. Deducing necessary results prove that an analytic function f(z) must be a
constant if the real part of f(z) is a constant. 5

4. a) Illustrate Cauchy’s Integral formula with an example. Hence deduce Cauchy’s
inequality. 7
b) Show that {zn} is a null sequence for |z| < 1. 3

5. a) Expand f(z) = sinz in a Taylor series about z = 0. Hence or otherwise

expand f(z) = sin(z)
z3

in a Laurent series, valid for |z| > 0 and evaluate∫
|z|=1

f(z)dz 7

b) Discuss with examples: Singularity and Poles. 3

7
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6. If f(z) is continuous in a domain D admitting an anti-derivative evaluate∫
γ
f(z)dz for any closed contour γ lying inside D. Evaluate

∫
γ
(z + 2)ezdz

when γ is the parabola π2y = x2 from (0, 0) to (γ, 1). 7
b) Discuss with examples: Laurent Series Expansion of a complex valued
function. 3

7. State a necessary and sufficient condition for a continuous function f(z) to
be analytic in a region D. Prove that the complex conjugate of an analytic
function is also analytic. Define a harmonic function. Prove that if f(z) is
analytic then the real and imaginary parts of f(z) are harmonic. 10

8. (a) Evaluate
∫
γ

|z|2
z
dz when (i) γ is a straight line from z = 0 to z = 1+ i and

(ii) γ is the arc of the parabola y = x2, z = 0 to z = 1 + i.
(b) Define limit of a complex valued function. What will be the value of

limz→0
Re(z)
Im(z)

when (i) z approaches 0 along the line y = x and (ii) z approaches
0 along the imaginary axis. Hence comment on the existence of the limit. 10

9. State the residue theorem and discuss with examples the different methods of
obtaining the residues. Identifying the poles of the function f(z) = 1

z(z2−3z+2)

evaluate
∫
γ
f(z)dz when (i)γ = {z : |z| = 1

2
} (ii)γ = {z : |z| = 4

3
} and

(iii)γ = {z : |z| = 5
2
}. [1+3+6]

10. Consider f(z) = z̄
z
, z ̸= 0. Examine whether limz→0 f(z) exist or not.

11. Define continuity of a complex function. Consider the following function

f(z)

=

{
z2−3z−10i
z+(1+2i)

if z ̸= −(1 + 2i)

0 otherwise ,

Check the continuity of f at −(1 + 2i).



Chapter 3

Linear Algebra

Syllabus:

1. Vector spaces with real field. Basis dimension of vector space.

2. Orthogonal vectors, Gram-Schmidt orthogonalization.

3. Linear transformation of matrices. Matrix operations.

4. Elementary matrices and their uses.

5. Rank of a matrix and related results. Determinants. Inverse of a matrix.

6. System of linear equations: homogenous and non-homogenous system.

7. Generalized inverse: Moore-Penrose.

8. Idempotent matrices and its properties.

9. Characteristic roots and vectors.

10. Quadratic forms and canonical reduction.

11. Singular value decomposition.

3.1 Exercise

1.

9
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Chapter 4

Probability I

Syllabus:

1. Random Variables: Definition of discrete and continuous random variables.
Cumulative distribution function and its properties, probability mass func-
tion and probability density function. Expectation and moments, Dispersion,
Skewness, Kurtosis and Quantiles. [ 5 ] Bivariate probability distributions.
Marginal and conditional distributions. Independence. Conditional moments.
[7] Correlation and Regression. Generating Functions : probability generating
function and moment generating function in univariate and bivariate cases.
[5] Probability Inequalities : Chebyshev’s lemma, Markov’s Chebyshev’s in-
equalities. Some common univariate distributions. Bivariate Normal distri-
butions and its properties. [6] Limit Theorems: Convergence in distribution:
De-Moivre-Laplace limit theorem and Normal approximation to the Poisson
distribution. [2] Sigma fields in probabily. Borel sigma field. Measures and its
properties. Probability as a measure. Measurable functions and its properties.
Random variable as a measurable function . Integration of a measurable func-
tions. [10] Sequence of measurable functions: Monotone convergence theorem,
Fatou’s lemma and Dominated convergence theorem and their probabilistic as-
pects. Radon-Nikodym theorem and its applications. Distribution functions:
application of Lebesgue-Stieltje’s measure. Expectation and inequalities.

4.1 Exercise GEC Probability

1. For two random variables X and Y , E(X) = 8, E(Y ) = 6, var(Y ) = 36 and
rXY = 0.5. Find i) E(XY ), ii) cov(X,X + Y ), iii) var(2X − 2Y )

11
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2. Define probability density function of a random variable X. Is the following a
probability density function?
f(x) = x/2 , 0 < x ≤ 1

= 1
2

, 1 < x ≤ 2

= 3−x
2

, 2 < x ≤ 3

= 0 , otherwise

3. For mutually exclusive eventsA1, A2, . . . , An, prove that P (∪n
i=1Ai) =

∑n
i=1 P (Ai).

What will be the value of P (∪n
i=1Ai) if A1, A2, . . . , An are mutually exclusive

and exhaustive events.

4. Let B1, B2, . . . , Bn be exhaustive and mutually exclusive events with P (Bi) >
0, i = 1, 2, . . . , n. Show that for any event A, P (A) =

∑n
i=1 P (Bi)P (A|Bi).

5+5

5. A random variable X has pmf f(x) =

{ x
21

, for x = 1, 2, . . . , 6

0 , otherwise
. Find

P (1
2
< X < 5

2
|X > 1).

6. Write down the p.d.f of Normal(µ, σ2) distribution. Show that this distribution
is symmetric. Calculate its median and mode.

7. Find the mean deviation about mean of X where X ∼ N(0, σ2). 5+5

8. Define CDF of a random variable. Write down the properties to be satisfied
by a CDF.

9. For a Binomial distribution prove that cov(X,n − X) = −npq, where the
notations have their usual meaning. 5+5

10. Suppose P (A) = p1, P (B) = p2 and P (A∩B) = p3. Show that P (Ac ∩Bc) =
1− p1 − p2 + p3.

11. For a Binomial distribution with parameters n and p, establish the following
relationship

µr+1 = pq(nrµr−1 +
dµr

dp
)

12. For a normal distribution with mean 3 and variance 16, find the value of y of
the variate such that the probability of the variate lying in the interval (3, y)
is 0.4772. [You are given P (Z ≤ 2) = 0.9772].
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13. If A and B are independent events and P (A) = 0.4, P (B) = 0.8, then find
P (A−B).

14. State Boole’s inequality for 3 events A,B and C.

15. If A and B are independent events with P (A) > 1/2, P (B) > 1/2, P (A∩Bc) =
3/25 and P (B ∩ Ac) = 8/25, find out the values of P (A) and P (B).

16. State and prove Bayes’ theorem.

17. For any four events A1, A2, A3, prove the following inequalities
(i) P (A1 ∪ A2 ∪ A3) ≤ P (A1) + P (A2) + P (A3)
(ii) P (A1 ∪A2 ∪A3) ≥ P (A1) +P (A2) +P (A3)−P (A1 ∩A2)−P (A2 ∩A3)−
P (A3 ∩ A1)
Give two examples where above two equality hold.

18. Two balls are drawn without replacement from a bag containing 6 red, 8 green
and 10 black balls. What is the Probability of drawing one red and one green
ball?

19. If A and B are independent events with P (A) > 1/2, P (B) > 1/2, P (A∩Bc) =
3/25 and P (B ∩ Ac) = 8/25, find out the values of P (A) and P (B).

20. The p.m.f. f(x) of a discrete rv X assuming values 0, 1, 2, . . . satisfies the
relation
f(x + 1) = a

x+1
f(x), a > 0, x = 0, 1, 2, . . . determine a and f(x). Find the

expectation of X.

21. (a) The C.V. of a Poisson distribution is 25%. Find its mean and s.d.
(b) For a nonnegative random variable X, show that

√
(E(X)) ≥ E(

√
X)

(c) If P (A) = 1/2, P (Bc) = 1/4 and P (Ac ∩B) = 5/11, find P (A|Bc).

22. Two fair dice are thrown. If the sum of two numbers obtained is 8, then the
Probability that the first number is 6 will be (a) 1/6 (b) 5/36 (c) 1/4
(d) none of these.

23. If the occurrence of an event A implies that of B, then
(a) P (B) ≤ P (A) (b) P (B) < P (A) (c) P (A) ≤ P (B) (d)
P (A) < P (B).

24. The probability of having at most one tail in 3 tosses of a fair coin is
(a) 3/8 (b) 1/8 (c) 1/2 (d) 7/8.

25. What is the Probability of drawing one white ball from a bag containing 6 red,
8 green and 10 black balls?
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26. If P (A|B) = 1/4, then what is the value of P (Ac|B).

27. A problem in mathematics is given to 3 students A1, A2, A3, whose chances
of solving it are 1/4, 1/2, 3/4 respectively. What is the Probability that the
problem will be solved by at least one of the students?

28. For three events A1, A2, A3, state and prove Bonferroni’s inequality.
Or, If an integer X is randomly selected from the first 50 positive integers,
then find the value of P

(
X + 96

X
> 50

)
.

29. If P (A) = 1/2, P (B) = 1/3 and P (Ac ∩Bc) = 5/12, find P (A|B).

30. If X is a continuous random variable, then the value of P (X = 3) is..........

31. A random variable X takes only two values 0 and 1 where P (X = 1) = 2/3.
Find E(X).

32. A man gets n2 rupees for the n dots appearing on rolling a single unbiased
die. Determine expected gain from a single throw.

33. Three coins, whose faces are marked as 1 and 2, are tossed. What is the
expectation of the total value (sum) of numbers on their faces?

34. Define expectation of a random variable. X and Y are two independent ran-
dom variables with E(X) = E(Y ), show that E(X(X − Y )) = V ar(X).

35. If the standard deviation of a Poisson variable is 2.5, its mode is

(a) 2 (b) 1 (c) 6 (d) 3.

36. If the mean of a binomial distribution B(n, p) is n/2, then skewness of distri-
bution is

(a) positive (b) negative (c) symmetric (d) none of these.

37. For a normal distribution with parameters µ and σ2, β2 is

(a) 0 (b) 3 (c) 2 (d) 1.

38. The third order central moment of Poisson distribution having parameter 4 is

(a) 4 (b) 2 (c) 16 (d) none of these.

39. Let X follow normal distribution with mean 45 and standard deviation 5 and
Φ(1) = 0.84, then P (X ≤ 40) is

(a) 0.16 (b) 0.84 (c) 0.68 (d) none of these.
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40. State true or False: The mean and variance of a binomial distribution are 5
and 16 respectively.

41. Fill in the gap: The S.D. of standard normal variable is ........

42. Write true or false: If X is a negative random variable such that |E(X)| = 4,
then give the values of E(X).

43. The C.V. of a Poisson distribution is 25%. Find its mean.

44. If the mean of a Poisson distribution is 1.5, its mode is..........

45. A random variable X is such that P (X = 1) = P (X = 0) = 1/2. Find E(X2).

46. If X is a Poisson variable such that P (X = 2) = 9P (X = 4) + 90P (X = 6),
find P (X ≥ 2).

47. The p.m.f. f(x) of a discrete rv X assuming values 0, 1, 2, . . . satisfies the
relation

f(x+ 1) = a
x+1

f(x), a > 0, x = 0, 1, 2, . . . determine f(x).

48. If E(X) = 3, E(X(X − 1)) = 22, then Var(7− 2X) is equal to

(a) 16 (b) 64 (c) 32 (d) none of these.

49. Write true or false: Values of a random variable are always positive.

50. Write true or false: Expectation of a random variable cannot be negative.

51. Write true or false: For a negative random variable X, E(X) may be positive.

52. Write true or false: Binomial distribution can never be symmetric.

53. Write true or false: If V (X) = 0, then all values of X are equal.

54. What do you mean by probability distribution of a discrete random variable.

55. When is a random variable said to have a binomial distribution?

56. For a random variable X, show that (E(X2))
1
2 ≥ E(X).

57. Define binomial distribution.

58. Let f be a function such that f(x) = ax, (x = 1, 2, . . . , l). For what value of a
will this f(x) be the probability mass function of a discrete random variable
x? Find the expectation of x.
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59. Arithmetic mean and standard deviation of a binomial distribution are respec-
tively 4 and

√
8/3. Find the values of n and p.

60. Write down the probability mass function of a Poisson distribution. State its
arithmetic mean and standard deviation.

61. If the 3rd quartile of standard normal variable is 0.675. Find the quartile
deviation of that variable.

62. Write down the p.m.f. of Poison(5) distribution.

4.2 Exercise

1. If An is an increasing sequence of subset of probability space (Ω,F , P ), prove
that limP (An) = P (limAn). [5]

2. Let X be a random variable defined on (Ω,F), and a, b be reals. Then show
that aX + b is also an random variable on (Ω,F , P ). [5]

3. Prove that the distribution function F is right continuous and limx→∞ F (x) =
1. [5]

4. Show that the minimum sigma-field containing the class C = {(a, b] : ∞ <
a < b < ∞} generates all Borel sets of R. [5]

5. What is meant by sigma-finite measure? Show that the Lebesgue measure
defined on the class of Borel sets of the real line is sigma-finite. [5]

6. Define measurable function on measure space (X,B). Show that if {fn} be a
sequence of measurable functions, then supfn is measurable. [5]

7. Suppose 2r balls are distributed at random into r boxes. Let Xi denote the
number of balls in box i.
(a) Find the joint distribution of X1, X2, . . . , Xr.
(b) Find the probability that each box contains exactly 2 balls.
(c) Find the the distribution of X1|X2. 3+3+4

8. Let X and Y be independent random variables having geometric distribution
with 0.3 and 0.4 respectively. Find
(a) P (X ≥ Y )
(b) P (X = Y )
(c) distribution of min(X, Y ). 3+3+4
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9. (a) For a probability space (Ω,F , P ) and the sequence of sets {An} in F , if
ΣnP (An) < ∞, show that P (lim sup An) = 0.

(b) For a probability space (Ω,F , P ), let F0(⊂ F) be a field of subsets of
Ω and consider any set A ∈ σ(F0) (= minimum σ-field generated by the set
A). Then show that for any ϵ > 0, there exists a set Tϵ ∈ F0 such that
P (A∆Tϵ) < ϵ, ∆ being the symmetric difference. What is the implication of
this result? [4+6]

10. (a) Let (Ω,B, µ) be a measure space with finite measure µ. Show that for any
sequence of set {An} in B:
(i) lim inf µ(An) ≥ µ(lim inf An) and
(ii) lim supµ(An) ≤ µ(lim supAn).
Clearly mention where finiteness of the measure are required.
Hence or otherwise show that An → A implies µ(An) → µ(A)

(b) Show that extended real-valued measureable functionf is the limit of a
sequence {fn} of simple finite valued functions. [6+4]
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Chapter 5

Generalized Inverse

1. Define G-inverse. Prove that every matrix has a g-inverse. Is this unique?
Justify.

2. Let G be a g-inverse of A. Then the system Ax = b is consistent if and only
if AGb = b.

3. What is the Moore-Penrose inverse of a null matrix of order 2× 3.

4. Let G be a g-inverse of A. Then column space of B is a subspace of column
space of A if and only if AGB = B.

5. If A,G be matrices of order m × n and n ×m respectively. Then prove that
G is a g-inverse of A if and only if for any y ∈ C(A), x = Gy is a solution of
Ax = y.

6. Prove that if G is a g-inverse of A then Rank(A)= Rank(GA)= Rank(AG).

7. Define reflexive g-inverse of a matrix. Prove that if G is a g-inverse of A then
Rank(A)= Rank(G).

8. Define minimum norm g-inverse of A. Prove that G is a minimum norm g-
inverse of A if and only if for any y ∈ C(A), x = Gy is a solution of Ax = y
with minimum norm.

9. Define least square g-inverse of A. Prove that G is a least square g-inverse of
A if and only if for any x, y, ||AGy − y|| ≤ ||Ax− y||.

10. Let A = BC be a rank factorization. Let B−
l be a left inverse of B and C−

r be
a right inverse of C. Show that C−

r B
−
l is a g-inverse of A.

19
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11. Show that a matrix which is not a square matrix or not a nonsingular matrix
admits infinitely many g-inverses.

12. Let A be a matrix of order m×n and G be a g-inverse of A, and let y ∈ C(A).
Prove that the class of solutions of Ax = y is given by Gy+(I −GA)z, where
z is arbitrary.

13. Define Moore-Penrose inverse. Show that it exist and unique.

14. Let A be a matrix of order m× n and G be a g-inverse of A. Prove that the
class of all g-inverse of A is given by G+(I −GA)U +V (I −AG), where U, V
are arbitrary.

15. Find the set of all g-inverses of the following matrix:1 2 1
0 1 1
1 3 2


Find a g-inverse of the above matrix which does not contain any zero entry.

16. Show that the class of g-inverses of[
1 −1

−1 1

]
is given by [

1 + a+ c a+ d
b+ c b+ d

]
where a, b, c, d are arbitrary.

17. Let A be a matrix of order m×n, let rank A = r, and let r ≤ k ≤ min{m,n}.
Show that A has a g-inverse of rank k. In particular, show that any square
matrix has a nonsingular g-inverse.

18. Find the minimum norm solution of the system of equations:

2x+ y − z = 1, x− 2y + z = −2, x+ 3y − 2z = 3.

19. Find the Moore-Penrose inverse of [
2 4
3 6

]
.

20. Let x be an n× 1 vector. find the g-inverse of x which is closest to the origin.
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21. Let X be a matrix of order m× n and let y ∈ Rn. Show that the orthogonal
projection of y onto C(X) is given by X(X ′X)−X ′y for any choice of the
g-inverse.

22. For any matrix X, show that X+ = (X ′X)+X ′ and X(X ′X)−X ′ = XX+.

23. Let A be a matrix of order m× n, let P,Q be matrices of order r ×m. Show
that PA = QA if and only if PAA′ = QAA′.

24. Let A,G be matrices of order m × n, n × m respectively. Show that G is a
mimimum norm g-inverse of A if and only if GAA′ = A′.
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Chapter 6

Linear Model

Content

1. Gauss-Markov model. Estimable functions. Best linear unbiased estimator
(BLUE).

2. Gauss Markov Theorem. Estimation space and error space.

3. Sum of squares due to a set of linear functions.

4. Estimation with correlated observations. Least Square estimation with linear
restriction on the parameters.

5. General linear hypothesis.

6.1 Preliminaries

Let y be a column vector with components y1, y2, . . . , yn. We call y a random
vector if each yi is a random variable. The expectation of y , denoted by E(y), is
the column vector with components E(y1), E(y2), . . . , E(yn). Clearly,

E(Bx + Cy) = BE(x ) + CE(y) . . . (1)

where x , y are random vectors and B,C are constant nonrandom matrices of proper
order.

23
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Quick Exercise

1. What is the order of B and C?

2. Prove (1).

If x and y are random vectors of order m and n respectively, then the co-
variance matrix between x and y , denoted by cov(x ,y), is an m× n matrix whose
(i, j)-entry is cov(xi, yj).

The dispersion matrix, or the variance-covariance matrix of y , denoted by
D(y), is defined to be cov(y , y).

If b and c are constant nonrandom column vectors of proper order then

cov(b′x , c′y) = b′cov(x ,y)c . . . (2)

Setting x = y and b = c gives

var(b′x ) = b′D(x )b . . . (3).

Since varience is nonnegative we conclude that D(x ) is positive semidefinite.

Recall that var(b′x ) = 0 if and only if there exists a linear combination b′x
which is constant with probability one.

From (2) we get

cov(Bx , Cy) = Bcov(x ,y)C ′ . . . (4).

Quick Exercise

1. What is the order of b and c?

2. Prove (2) and (4).

3. Prove that the dispersion matrix is symmetric.

4. When D(x ) is positive definite?

6.2 Linear Model

Consider the random variables y1, y2, . . . , yn such that the distribution of these ran-
dom variables is controlled by some unknown parameters. In a linear model, the
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basic assumption is that E(yi) is a linear function of the parameters β1, β2, . . . , βn

with known coefficients. In matrix notation this can be expressed as

E(y) = Xβ . . . (5)

where y is the n × 1 column vector with components y1, y2, . . . , yn; X is known
nonrandom matrix of order n× p and β is a p× 1 column vector with components
β1, β2, . . . , βp.

The matrix X called as Disign matrix.

Homoscedasticity assumptions:
(i) y1, y2, . . . , yn are uncorrelated and (ii) var(yi) = σ2 for all i.

Hence

D(y) = σ2I . . . (6)

Another way to write the model (5) is

y = Xβ + e . . . (7)

where the random vector e satisfies the homoscedasticity assumptions E(e) = 0
and D(e) = σ2I.

Our objective is to find estimates of β1, β2, . . . , βp and thier linear combina-
tions; and to find estimates of σ2.

Quick Exercise

1. Prove that (7) =⇒ (5).

2. Prove (6).

3. Prove that (5) =⇒ (7).

4. Consider the model:
E(y1) = α + γ
E(y2) = α− 4β + 2γ
E(y3) = −6α + 2β + γ
where y1, y2, y3 are independent with common variance σ2 and α, β, γ are pa-
rameters. Write the linear model in matrix notation and also describe the
order of all matrices and vectors.

Is the design matrix invertible?
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5. Consider the linear model

E(y1) = β1 + β2, E(y2) = 2β1 − β2, E(y3) = β1 − β2,

where y1, y2, y3 are uncorrelated with a common variance σ2.

(i) Find two different linear functions of y1, y2, y3 which are unbiased for β1.
Determine their variances and covariance between the two.

(ii) Find two linear functions of y1, y2, y3 which are unbiased for β2 and uncor-
related.

(iii) Write the model in terms of the new parameters θ = β1+2β2, θ2 = β1−2β2.

6.3 Estimability

Consider the linear model

E(y) = Xβ, D(y) = σ2I . . . (8)

where y is the n× 1, X is n× p and β is p× 1.

The linear parametric function l′β is said to be estimable if there exists a linear
function c′y of the observations y1, y2, . . . , yn, such that E(c′y) = l′β for all β ∈ Rp.

Now the condition E(c′y) = l′β is equivalent to the condition c′Xβ = l′β.

Now we have the following facts:
Fact (1): If Ax = Bx for all x ∈ Rp then A = B.
Fact (2): c′X = l′ if and only if l′ ∈ R(X).

Hence l′β is estimable if and only if l′ ∈ R(X).
Notation: R(X) is the row space of X and C(X) is the column space of X

Quick Exercise

1. Prove the fact (1) and (2).

2. Consider the model:
E(y1) = α + β + 2γ
E(y2) = 2α + β − γ
E(y3) = 2α + 2β + γ
where y1, y2, y3 are independent with common variance σ2.

Find a, b, c such that aα + bβ + cγ is estimable.
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3. Consider the linear model E(y) = Xβ,D(y) = σ2I and let xi be the i-th
column of X, for i = 1, 2, . . . , p. Prove that the function l1β1 + l2β2, where
l1, l2 are not both zero, is estimable if and only if x1, x2 do not belong to the
linear span of l2x1 − l1x2, x3, . . . , xp.

4. Consider the model E(y) = Xβ,D(y) = σ2I. If X has full column rank, prove
the following:
(a) Every function l′β is estimable.
(b) X ′X is non singular.

5. Consider three independent random variables, Y1, Y2, Y3 having common vari-
ance σ2 and expectations EY1 = µ2 + µ3, EY2 = µ1 + µ2 and EY3 = µ1 + µ3.
Determine the condition of estimability of parametric function l1µ1+l2µ2+l3µ3.

6. Consider the linear model

E(y1) = 2β1 − β2 − β3, E(y2) = β2 − β4, E(y3) = β2 + β3 − 2β4

with usual assumptions. Determine the estimable functions.

Some results from generalized inverse

The following facts concerning generalized inverse are important in linear model:

1. For any matrix X, R(X) = R(X ′X) and C(X ′) = C(X ′X).

2. The matrix AC−B is invariant under the choice of the g-inverse C− of C if
C(B) ⊂ C(C) and R(A) ⊂ R(C).

3. The matrix X(X ′X)−X ′ is invariant under the choice of the ginverse of X.

4. The matrix X(X ′X)−X ′X = X and X ′X(X ′X)−X ′ = X ′.

5. Any choice of g-inverse, (X ′X)−X ′ is a least square g-inverse of X.

6.4 Best Linear Unbiased Estimate

Let l′β be an estimable function. We say a linear function c′y is BLUE(best linear
unbiased estimate) if E(c′y) = l′β i.e., c′y is an unbiased estimate of l′β and has
minimum variance among all unbiased estimates of l′β.
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Theorem 6.4.1 Let l′β be an estimable function and let G be a least square g-
inverse of X. Then l′Gy is a BLUE of l′β and var(l′Gy) = σ2l′(X ′X)−l.

Proof: Since l′β is estimable, l′ = u′X for some u. Then

E(l′Gy) = u′XGXβ = u′Xβ = l′β . . . (9)

and hence l′Gy is an unbiased estimate forl′β.

Let c′y be any other unbiased estimate for l′β, i. e., E(c′y) = l′β.

Put w′ = c′ − l′G, hence E(w′y) = 0. Which implies w′Xβ = 0.

Since the above relation true for all β, we have w′X = 0.

So any unbiased estimate of l′β is of the form (l′G+ w′)y , where w′X = 0.

Now using (3) we get

var ((l′G+ w′)y) = (l′G+ w′)D(y)(l′G+ w′)′ = σ2(l′G+ w′)(G′l + w).

Since l′ = u′X we have

var ((l′G+ w′)y) = σ2(u′XG+ w′)(G′X ′u+ w) . . . (10).

Since G is a least square g-inverse of X, we have G′X ′ = (XG)′ = XG, and
hence

u′XGw = uG′X ′w = 0 . . . (11)

and therefore from (10) and (11) we get

var ((l′G+ w′)y) = σ2 (l′GG′l + w′w) = var(l′Gy) + σ2w′w . . . (12).

Hence
var ((l′G+ w′)y) ≥ var(l′Gy) . . . (13).

Now equality holds in (13) if and only if w′w = 0 i.e., w = 0, hence BLUE is unique.

Therefore l′Gy is the BLUE of l′β.

We know if (X ′X)+ be the Moore-Penrose g-inverse of X ′X then (X ′X)+X ′

is a least square g-inverse of X and hence

var(l′Gy) = var(l′(X ′X)+X ′y) = σ2l′(X ′X)+X ′(l′(X ′X)+X ′)′ = σ2l′(X ′X)+l . . . (14).

Now l′(X ′X)−l = u′X(X ′X)−X ′u, which is invariant with respect to the choice of
g-inverse, hence l′(X ′X)−l = u′X(X ′X)−X ′u = u′X(X ′X)+X ′u = l′(X ′X)+l.
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Hence the theorem.

Example Consider the model E(yi,j) = αi + βj, i = 1, 2; j = 1.2. The model
can be expressed in standard form as E(y) = Xβ, where

y =


y11
y12
y13
y14

 , X =


1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1

 and β =


α1

α2

β1

β2

 .

Let S be the set of all vectors (l1, l2,m1,m2) such that l1 + l2 = m1 +m2. Now we
have the following observations:

Observation 1: R(X) ⊂ S

Observation 2: dim(S) = 3 and rank of X is 3.

From Observation 1 and 2 we get

Observation 3: R(X) = S.

Hence l1α1 + l2α2 +m1β1 +m2β2 is estimable if and only if l1 + l2 = m1 +m2.

Next we have the following results:

Result 1:

X ′X =


2 0 1 1
0 2 1 1
1 1 2 0
1 1 0 2


Result 2:

(X ′X)− =
1

4


0 0 0 0
0 4 −2 −2
0 −2 3 1
0 −2 1 3


Result 3:

X(X ′X)−X ′ =
1

4


3 1 1 −1
1 3 −1 1
1 −1 3 1

−1 1 1 3


Now the BLUE of any estimable function u′Xβ is u′X(X ′X)−X ′y.

For example, if u = (1, 0, 0, 0)′ then u′Xβ = α1+β1 and u′Xβ is u′X(X ′X)−X ′y =
1
4
(3y11 + y12 + y21 + y22) . . . (∗).

Hence the BLUE of α1 + β1 is 1
4
(3y11 + y12 + y21 + y22).

Now the variance of the BLUE is σ2u′X(X ′X)−X ′u = 3σ2

4
. . . (∗∗).
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Quick Exercise

1. Prove (12) and (13).

2. Prove every steps of (14).

3. Prove Observation 1, 2 and 3.

4. Consider the model:
E(y1) = α− β + γ
E(y2) = α + β + 2γ
E(y3) = −α + 2β + γ
where y1, y2, y3 are independent with common variance σ2. Find a, b, c such
that aα + bβ + cγ is estimable. Find the BLUE for the estimable functions.
Find variance for the BLUE.

5. Analyze the model E(yi,j) = αi + βj, i = 1, 2; j = 1.2. Find the BLUE of
α1 + β1.

6. Show that the BLUE of an estimable function is unique i.e., if l′β is an es-
timable function and if c′y, d′y are both BLUE of the function, then c = d.

7. Prove Results 1, 2 and 3.

8. Prove (*) and (**) in the above example.

9. Find the BLUE and the variance of the BLUE of α1 + α2 + β1 + β2.

10. Consider the linear model E(y) = Xβ,D(y) = σ2I and suppose y,X are
partition as

y =

[
y1
y2

]
, X =

[
X1

X2

]
.

The model thus broken into two models: E(y1) = X1β,D(y1) = σ2I and
E(y2) = X2β,D(y2) = σ2I. How does one combine the BLUE of an estimable
function under the two models to arrive at the BLUE under the original model.

11. Consider the model E(y1) = 2β1 + β2, E(y2) = β1 − β2, E(y3) = β1 +αβ2 with
usual assumptions. Determine α so that the BLUEs of β, β2 are uncorrelated.

6.5 Regression Model

The model (8) is said to be a full rank model or regression model if X has full
column rank, i.e., rankX = p.
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For a regression model we have the following results:

(A) R(X) = Rp.

(B) Every function l′β is estimable.

(C) X ′X is nonsingular.

Theorem 6.5.1 (Gauss-Markov Theorem) Consider the regression model
E(y) = Xβ,D(y) = σ2I. Let β̂i be the BLUE of βi and β̂ be the column vector
with components β̂1, β̂2, . . . , β̂p. Then β̂ = (X ′X)−1X ′y and dispersion matrix of β̂
is σ2(X ′X)−1 and the BLUE of l′β has variance σ2l′(X ′X)−1l.

Proof: Since X ′X is nonsingular, (X ′X)− = (X ′X)−1. We have the BLUE of l′β is
l′(X ′X)−1X ′y .

Put li be the p × 1 column vector whose i-th component is 1 and rest are 0.
Then βi = l′iβ and hence β̂i = l′i(X

′X)−1X ′y for all i = 1, 2, . . . , p.

Therefore, β̂ = Ip(X
′X)−1X ′y = (X ′X)−1X ′y .

Next the dispersion matrix of β̂ is

(X ′X)−1X ′D(y)
(
(X ′X)−1X ′)′ = (X ′X)−1X ′(σ2In)X(X ′X)−1 = σ2(X ′X)−1 . . . (15).

Finally the BLUE of l′β has variance σ2l′(X ′X)−1l.

A result from linear algebra

Ler X be an n× n matrix and suppose |xij| ≤ 1 for all i, j. Then det(X ′X) ≤ nn.

6.5.1 Weighing Design

Suppose four objects are to be weighed using an ordinary balance (without bias)
with two pans. We are allowed four weighings. In each weighing we may put some
of the objects in the right pan and rest in left pan. Let β1, β2, β3, β4 be the true
weights of the objects. Define xij = 1 or −1 depending upon whether we put the
j-th object in the right pan or in the left pan in the i-th weighing. Let yi denote the
weight needed to achieve balance in the i-th weighing. If the sign of yi is positive,
then the weight is required in the left pan, otherwise in the right pan.

Then we have the model E(y) = Xβ, where X = (xij) is the 4 × 4 design
matrix, y = (y1, y2, y3, y4)

′ and β = (β1, β2, β3, β4).
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Assumption: (a) yi’s are uncorrelated with common variance σ2.

(b) X ′X is nonsingular.

Now observe the followings:

(a) X ′X is positive semidefinite.

(b) |X ′X| ≤ 44.

(c)

For X =


1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1

 we have |X ′X| = 44

(d) X is a Hadamard matrix, i.e., each entry is either 1 or −1 and the rows
are orthogonal.

The dispersion matrix of β̂ is σ2(X ′X)−1.

Hence the minimum possible determinant of the dispersion matrix is σ2

44
.

Quick Exercise

1. Prove the results (A), (B) and (C).

2. Prove every steps of (15).

3. Prove the observations (a), (b), (c) and (d).

4. Given a linear equation of x and y, discuss the regression model?

6.6 Residual Sum of Squares

Consider the linear model given in (7), y = Xβ+e . The vector e is known as error
vector.

Let y and e be an observation from y and e respectively.

Hence we have y = Xβ + e. The least square method is to minimized e′e with
respect to β.

Observed that Xβ is a vector in the column space of X and y is not a vector
in that space unless e = 0. So idea is that e′e will be minimum when e is orthogonal
to the column space of X, that is e is orthogonal to every columns of X.
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Which implies X ′e = 0 . . . (#).

Hence we have X ′Xβ = X ′y . . . (16).

The above equation known as the Normal equation.

Since C(X ′) = C(X ′X), the normal equation is consistent.

Now if β̂ is a solution of the normal equation then β̂ = (X ′X)−X ′y for some
choice of the g-inverse.

The residual sum of squares (RSS) is defined to be

y −Xβ̂)′(y −Xβ̂).

Observe that, the RSS is invariant under the choice of the g-inverse (X ′X)− although
β̂ may depend on the choice . . . (observation @).

Theorem 6.6.1 The minimum of (y −Xβ)′(y −Xβ) is attained at β̂.

Proof: We have

(y −Xβ)′(y −Xβ) = (y −Xβ̂ +Xβ̂ −Xβ)′(y −Xβ̂ +Xβ̂ −Xβ).

Now

(Xβ̂ −Xβ)′(y −Xβ̂) = (β̂ − β)′X ′(y −X(X ′X)−X ′y) = 0 . . . (+)

Therefore

(y −Xβ)′(y −Xβ) = (y −Xβ̂)′(y −Xβ̂) + (β̂ − β)′X ′X(β̂ − β) . . . (++)

=⇒ (y −Xβ)′(y −Xβ) ≥ (y −Xβ̂)′(y −Xβ̂)

and equality holds when β = β̂.

Theorem 6.6.2 If Rank(X) = r, then E(y−Xβ̂)′(y−Xβ̂) = (n− r)σ2.

Proof: We have

E ((y −Xβ)′(y −Xβ)) = D(y) = σ2I.

Thus

E(y ′y) = E(y)β′X ′ +XβE(y ′)−Xββ′X ′ + σ2I = Xββ′X ′ + σ2I.

Put P = I −X(X ′X)−X ′.
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Observe that P is symmetric, idempotent and PX = 0 . . . (17).
Now

E(y −Xβ̂)′(y −Xβ̂) = E(y −X(X ′X)−X ′y)′(y −X(X ′X)−X ′y) = E(y ′P ′Py).

We have y ′P ′Py = y ′P 2y = y ′Py = trace(y ′Py) = trace(Pyy ′). Hence

E(y −Xβ̂)′(y −Xβ̂) = E(trace(Pyy ′)) = trace(E(Pyy ′)) = trace(PE(yy ′)).

Now since PX = 0 we have

PE(yy ′) = P (Xββ′X ′ + σ2I) = PXββ′X ′ + σ2P = σ2P.

Therefore E(y −Xβ̂)′(y −Xβ̂) = σ2traceP .

Finally,

traceP = n−trace(X(X ′X)−X ′ = n−trace((X ′X)−X ′X) = n−rank((X ′X)−X ′X)

since (X ′X)−X ′X is idempotent.

However rank((X ′X)−X ′X) = rank(X ′X) = rankX = r.

Hence traceP = n− r and the proof is complete.

Conclusion (1): RSS/(n− r) is an unbiased estimator of σ2.

Conclusion (2): RSS=y ′y − β̂′X ′Xβ̂ = y ′y − y ′Xβ̂.

Quick Exercise

1. Prove every steps of (#).

2. Prove observation @.

3. Prove conclusion (1) and (2).

4. Prove (+) and (++).

5. Prove (17).

6. Consider the model:
E(y1) = α + β + γ
E(y2) = α + β + 2γ
E(y3) = 2α + 2β + γ
where y1, y2, y3 are independent with common variance σ2.

Find a, b, c such that aα+bβ+cγ is estimable. Find the BLUE for the estimable
functions. Find variance for the BLUE. Find RSS and an unbiased estimator
of σ2.
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7. Analyze the one way classified model E(yij) = αi + ϵij, i = 1, . . . , k; j =
1, . . . , ni, where ϵij are independent with mean 0 and variance σ2. Find RSS
and an unbiased estimator of σ2.

8. Suppose xi, yi, zi, i = 1, 2, . . . , n are 3n independent observations with common
variance σ2 and expectations given by E(xi) = θ1, E(x2) = θ2, E(zi) = θ1 −
θ2, i = 1, 2, . . . , n. Find BLUEs of θ1, θ2 and compute the RSS.

9. Consider the model E(yi) = θi, i = 1, 2, 3, 4; where yi are uncorrelated with
variance σ2. Suppose we have the restriction θ1 + θ2 + θ3 + θ4 = 0 on the
parameters. Find RSS. Moreover assume that θ1 = θ2. Then show that the
RSS is 4ȳ2 + 1

2
(y1 − y2)

2.

10. Consider the model E(y1) = β1 + β2, E(y2) = 2β2, E(y3) = β1 − β2 with usual
assumptions. Find the RSS.

6.7 One-way Classification

Consider the model

yij = αi + eij, i = 1, 2, . . . , k; j = 1, 2, . . . , ni,

where eij are independent with mean 0 and variance σ2.

Now the model can be written as

y = Xβ + e,

where y = (y11, . . . , y1n1 , . . . , yk1, . . . , yknk
)′;

e = (e11, . . . , e1n1 , . . . , ek1, . . . , eknk
)′;

β = (α1, . . . , αk)
′ and

X is a (n =
∑k

i=1 ni) × k matrix whose first n1 rows are (1, 0, 0, . . . , 0); next
n2 rows are (0, 1, 0, . . . , 0); and so on. Thus

X ′X = diag(n1, . . . , nk) . . . (18)

and
X ′y = (y1·, . . . , yk·)

′ . . . (19)

where

yi· =

ni∑
j=1

yij, i = 1, 2, . . . , k.
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Now observe that (i) the model is full column rank and (ii) the BLUE of αi are
given by the components of

α̂ = (X ′X)−1X ′y = (ȳ1, . . . , ȳk)
′

where ȳi =
yi
ni
, i = 1, . . . , k.

Now

RSS = y′y − α̂′X ′y =
k∑

i=1

ni∑
j=1

y2ij −
k∑

i=1

y2i·
ni

. . . (20).

Note that (i) the rank of X is k and hence (ii) E(RSS) = (n − k)σ2, where n =∑k
i=1 ni.

Quick Exercise

1. Prove every steps of (18) and (19).

2. Prove the observations (i), and (ii).

3. Prove every steps of (20).

4. Prove notes (i) and (ii).

5. Consider the one-way model:

yij = µ+ αi + eij, i = 1, . . . , k; j = 1, . . . , ni;

where eij are independent with mean 0 and variance σ2. What are the es-
timable functions? Is it correct to say that the grand mean ȳ.. is an unbiased
estimator of µ?

6.8 RSS under restriction

Consider the linear model E(y) = Xβ,D(y) = σ2I, where y is n× 1, X is n× p.

Suppose we have a linear restriction Lβ = z on the parameters. We assume
that R(L) ⊂ R(X) and z ∈ C(L), that is the equation Lβ = z is consistent.

Let β̂ = (X ′X)−X ′y for a fixed g-inverse (X ′X)− and let

β̄ = β̂ − (X ′X)−L′(L(X ′X)−L′)−(Lβ̂ − z).
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Theorem 6.8.1 The minimum of (y−Xβ)′(y−Xβ) subject to Lβ = z is attained
at β = β̄.

Proof: Since R(L) ⊂ R(X) and R(X ′X) = R(X), we have L = WX ′X for
some W . Let T = WX ′. Now

L(X ′X)−L′ = TT ′ . . . (21).

Since z ∈ C(L), Lv = z for some v. Thus

L(X ′X)−L′(L(X ′X)−L′)−z = TT ′(TT ′)−TXv = z . . . (22),

Lβ̂ = Ty . . . (23),

and
L(X ′X)−L′(L(X ′X)−L′)−Lβ̂ = TT ′(TT ′)−Ty = Ty . . . (24).

Using (22), (23) and (24) we get Lβ̄ = z.

Now for any β satisfying Lβ = z,

(y −Xβ)′(y −Xβ) =
(
y −Xβ̄ +X(β̄ − β)

)′ (
y −Xβ̄ +X(β̄ − β)

)
Claim: (β̄ − β)′X ′(y −Xβ̄) = 0.
Hence

(y −Xβ)′(y −Xβ) = (y −Xβ̄)′(y −Xβ̄) + (β̄ − β)′X ′X(β̄ − β)

Therefore
(y −Xβ)′(y −Xβ) ≥ (y −Xβ̄)′(y −Xβ̄)

and equality holds if and only if β = β̄.

To proof the claim we first observe that

X ′Xβ̄ = X ′Xβ̂ −X ′X(X ′X)−L′(L(X ′X)−L′)−(Lβ̂ − z).

= X ′y − L′(L(X ′X)−L′)−(Lβ̂ − z) since L′ = X ′XW ′ . . . (25).

Hence
X ′(y −Xβ̄) = L′(L(X ′X)−L′)−(Lβ̂ − z).

Since Lβ̄ = Lβ̂ = z, it follows that

(β̄ − β)′X ′(y −Xβ̄) = (β̄ − β)′L′(L(X ′X)−L′)−(Lβ̄ − z) = 0 . . . (26).

Which complete the proof. An example Consider the model E(yi) = θi, i = 1, 2, 3, 4;
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where yi are uncorrelated with variance σ2.

Suppose we have the restriction θ1 + θ2 + θ3 + θ4 = 0 on the parameters.

The model in standard form has X = I4. The restriction on the parameters
can be written as Lθ = 0, where L = (1, 1, 1, 1) and θ = (θ1, θ2, θ3, θ4)

′. Thus

θ̂ = (X ′X)−1X ′y = y

and
θ̄ = θ̂ − (X ′X)−1L′ (L′(X ′X)−1L′)−1

Lθ̂ = y − (ȳ, ȳ, ȳ, ȳ)′ . . . (27).

Thus RSS=(y −Xθ̄)′(y −Xθ̄) = 4ȳ2 . . . (28).

Quick Exercise

1. Prove (21) to (28).

2. Consider the model E(y1) = β1 + 2β2, E(y2) = 2β1, E(y3) = β1 + β2 with the
usual assumptions. Find the RSS subject to the restriction β1 = β2.

3. Consider the one-way model with k ≥ 2

yij = αi + eij, i = 1, . . . , k; j = 1, . . . , ni;

where eij are independent with mean 0 and variance σ2. Find the RSS subject
to the restriction α1 = α2.

6.9 General Linear Model

The general linear model is

E(y) = Xβ,D(y) = σ2V,

where Y is n × 1, X is n × p and V is a known positive semidefinite p × p matrix.
In previous section V = I. We do not assume any condition on the rank of X.

Consider the transformation z = V − 1
2y, then we have the model E(z) =

V − 1
2X,D(z) = σ2I, which is the linear model as discussed in previous section.

Quick Exercise

1. What is Estimation space and error space.
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6.10 Practical Problems

1. Consider the relation y = 3 + 2x+ ϵ where ϵ follows N(0, 1).
Step 1: Choose 100 values of x arbitrary, as your choice. You may choose
same value for x maximum four times. For each value of x draw a value of
ϵ from N(0, 1) using R-code or any other package. Then find the value of y
from the given relation.
Step 2: Now we have 100 pairs of data (xi, yi) for i = 1, 2, . . . , 100. Now do
the following:
(a) Draw a scattered diagram y vs. x.
(b) Fit a linear model y = a+ bx+ ϵ with E(ϵ) = 0 and V (ϵ) = σ2.
(c) Find least square estimation for a, b and σ2.
(d) Find goodness of fit, RSS,R2 and adjusted R2.
(e) Plot all residuals in a scattered diagram. Comments on this diagram.
Step 3: Next fit a linear model y = a + bx + cx2 + ϵ with E(ϵ) = 0 and
V (ϵ) = σ2 with the same set of 100 data and do the following:
(a) Find least square estimation for a, b, c and σ2.
(b) Find goodness of fit, RSS,R2 and adjusted R2.
(c) Plot all residuals in a scattered diagram. Comments on this diagram.
Comment on the fact the which fit is better and why?

2. (a) Do the same as previous problem with ϵ follows U(0, 6).
(b) Do the same as previous problem with ϵ follows Bin(6, 0.5).

3. Solve the following approximate system using R:
3a+ 4b+ c = 3.4 + ϵ1
3a+ 4b+ c = 3.5 + ϵ2
4a+ 3b+ 2c = 10.1 + ϵ3
4a+ 3b+ 2c = 9.8 + ϵ4
6a+ 5b+ 2c = 5.6 + ϵ5.
State what is the design matrix and rank of the design matrix.

4. Go to the page number 17 of the attached file. This is a data from NSSO site.
Fit a appropriate linear model stating all the assumption and concept clearly.

5. Go through the exel file of world bank data. Suggest what type of data analysis
can be done for India through linear model.

6. Assume that the data below satisfy the simple linear model. Find the m.l.e.
of the coefficients and the variance.
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Chapter 7

Design of Experiments I

Syllabus:

1. Basic principles of experimental design: randomization, replication, and local
control.

2. Uniformity trials. Shapes and sizes of plots and blocks.

3. Standard designs and their analyses: completely randomised design (CRD),
randomised block design (RBD), latin square design (LSD), split plot design,
and strip arrangements.

4. Comparison of efficiencies. Applications of the techniques of analysis of vari-
ance to the analysis of the above designs.

5. General block designs and its information matrix. Concepts of connectedness,
orthogonality and balance. Resolvable designs. Properties of BIB designs.
Designs derived from BIB designs.

6. Intrablock analysis of orthogonal (CRD, RBD, LSD) and non-orthogonal de-
signs (Balanced incomplete block design and Youden square design).

7.1 Exercise

1. Obtain the layouts of a CRD with three treatments, A, B and C, the replication
numbers being 6, 5 and 10 respectively.

2. Obtain the layouts of a RBD with five treatments in four blocks.

41
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3. Construct the model and ANOVA of CRD, RBD and LSD for n × n design
explicitly written all the steps.

4. Discuss the following terms with examples in connection with Design of Ex-
periments: Replication, Randomization, Local Control, Experimental Error,
Block, Plot, Block size, Guard area and Treatment.

5. Define Contrast and Orthogonal contrast. What do you mean by Sum of
Squares of a contrast.

6. Prove that given a set of n values there are maximum n − 1 numbers of
mutually orthogonal contrast. Write down explicitly two such set of n − 1
mutually orthogonal contrast.

7. The sum total of the s.s. due to all the n − 1 mutually orthogonal contrasts
among n observations is equal to the s.s. obtained by summing the squares of
their deviations from the mean.

8. Whether the following BIBD is constructable or not with the parameter b, v, r, k, λ.
If constructable then construct the design and if not, then give reason. All the
symbols have usual meaning.
v = 5, r = 6, k = 3, b = 10, λ = 3.
v = b = 22, r = k = 7, λ = 2.

9. Write down the complete set of mutually orthogonal contrast among y1, y2, y3, y4
using (a) 2 and −2 as coefficients and (b) 1 and −2 as coefficients.

10. What are orthogonal data and non orthogonal data. Analyze these two types
of data.

11. What is standard Latin square design. Give two examples of 4×4 non standard
LSD.

12. Prove that for any natural number n there is a LSD of order n.

13. An r×n Latin rectangle is an r×n array made out of the integers {1, 2, . . . , n}
such that no integer is repeated in any row or in any column. Give an example
of 3 × 5 Latin rectangle and extend it to a Latin Square of the order 5. In
general can any latin rectangle extended to a Latin square.

14. Let D be a BIBD and Dc, it’s complementary design. Show that in the design
formed by taking the union of the blocks of D and Dc, every triplet occurs
together in a constant number of blocks. Using this or otherwise prove that
for a BIBD b ≥ 3(r − λ). Hence show that if r = 3λ then b ≥ 2r.
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15. Show that if in a BIBD b = 3r − 2λ then r > 2λ.

16. Prove that Cov(Q,P ) = 0 if and only if N = rk
n
, for a block design, where the

symbols are in usual meaning.

17. If N is the incidence matrix of a symmetric BIBD, prove that (NN ′)(N ′N) =
(r − λ)(N ′N) + k2λEvv.

18. Let N be the incidence matrix of a BIBD with b = v. Show that (NN ′)−1 =
(r − λ)−1I − λ

r2(r−λ)
JJ ′. Hence show that for a symmetric BIBD, any two

blocks have λ treatments in common.

19. Let B0 be the Block of a BIBD and xi be the number of treatments common
between B0 and the ith of the remaining blocks. Show that σ2 =

∑
x2
i −

(
∑

xi)
2

b−1
= (r−k)(r−λ)(v−k)

(b−1)
. Hence prove the Fisher’s inequality.

20. Give a example of BIBD with parameter v = 9, b = 12, k = 3, r = 4, λ = 1.

21. Prove that, the necessary conditions for the existence of a BIBD is
λ(v − 1) ≡ 0 [mod (k − 1)] and λv(v − 1) ≡ 0 [mod k(k − 1)].

22. Define a BIBD with parameter v, b, k, r, λ. State and prove Fisher’s inequality.

23. Prove that for a BIBD, the inequality b ≥ v + r − k holds. Is this inequality
equivalent to Fisher’s inequality?

24. Let N be the incidence matrix of a BIBD. Show that (i) det(NN ′) = 0 if
b > v and (ii) the eigenvalues of NN ′ are rk and r − λ with multiplicities
unity and v − 1 respectively.

25. Prove that, for a symmetrical BIB design with v even, r−λ must be a perfect

square. Also Prove that, for symmetrical BIB design (N t)−1 =
N−λ

r
Jv

r−λ
and

hence show that, NN t = N tN.

26. Construct a of BIBD with parameter v = s2, b = s2+ s, k = s, r = s+1, λ = 1
with s = 4.

27. State which BIBD exist (with brief construction) and which BIBD does not
(with proof ).
a)v = 103 = b, r = 18 = k, λ = 3
b)v = 13, b = 26, k = 3, r = 6, λ = 1
c)v = 106 = b, r = 21 = k, λ = 5
d)v = 4, b = 12, k = 2, r = 6, λ = 2
e)v = 137 = b, k = 17 = r, λ = 2
f)v = 53 = b, k = 13 = r, λ = 3
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g)v = 46 = b, k = 10 = r, λ = 2
h)v = 106 = b, r = 20 = k, λ = 5

28. Show that starting from the BIBD v = 4 = b, k = 3 = r, λ = 2, we can get the
solution of the following BIBD:
a)v = 16 = b, r = 6 = k, λ = 2
b)v = 16 = b, r = 10 = k, λ = 6
c)v = 10, b = 15, k = 4, r = 6, λ = 2
d)v = 6, b = 15, k = 2, r = 5, λ = 1

29. Show that the BIBD with parameters
(i) v = b = 22, r = k = 7, λ = 2 (ii) v = b = 34, r = k = 12, λ = 4 do not
exist.

30. Show that in a symmetric BIBD, any two blocks have the same number λ of
treatments in common.

31. Show that if from a BIBD, we delete one block and all treatments belonging
to that block, then the remainder is again a BIBD, find its parameters.

32. Show that, if x is the number of treatments common between any two blocks of
a BIBD with parameters v, b, r, k and λ then 2kλ+r(r−k−λ)

r
≥ x ≥ −(r− k−λ).

33. If N is the incidence matrix of a BIBD, prove that (NN ′)(N ′N) = (r −
λ)(NN ′) + rkλEvv.

34. A square matrix with single entry of unity in each row and in each column
with all other elements zero is called permutation matrix. If N is the incidence
matrix of a symmetric BIBD, show that N can be express as a sum of k
permutation matrix.

35. Show that the following BIBD can be constructed for all integral values of
m(≥ 2): (i) v = 2m − 1 = b, r = 2m−1 = k, λ = 2m−2

(ii) v = 2m−1, b = 2(2m−1 − 1), r = 2m−1 − 1, k = 2m−2, λ = 2m−2 − 1
(iii) v = 2m−1 − 1, b = 2(2m−1 − 1), r = 2(2m−2 − 1), k = 2m−2 − 1, λ =
2(2m−3 − 1)
(iv) v = 2m−1 − 1, b = 2(2m−1 − 1), r = 2m−1, k = 2m−2, λ = 2m−2

36. Show that, for a BIBD if b = 4(r − λ) then k = (v +
√
2)/2 or (v −

√
2)/2 .

37. Show that if there exist a BIBD with r = 2k + 1 and λ = 1, then we can
construct a BIBD with parameter v∗ = 4k2–1 = b∗, k∗ = 2k2 = r∗, λ∗ = k2.

38. Write down the fixed effect model for the Block Design and find expression for
the C matrix.
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39. When is a block design called connected. Prove that a block design is con-
nected iff Rank (C) = v − 1.

40. Prove that for a resolvable BIBD with incidence matrix N , Rank(N) ≤ b −
(r − 1).

41. If Q denotes the vector of adjusted treatment totals, show that
(i) Q′J = 0, (ii) E(Q) = Cτ (iii) D(Q) = σ2C.

42. Show that for a connected design, the diagonal elements of the C-matrix are
all positive.

43. Prove that a BIBD is always connected unless k = 1.

44. Show that a necessary and sufficient condition for a connected block design to
be variance balanced is that it’s C-matrix is of the form C= (a− b)I + bJJ ′.

45. Show that C + aJJ ′ is non-singular for a connected design.

46. Show that for a connected design, (C + rr′/n) is non-singular. Hence show
that the variance of the estimated contrast l′τ is σ2l′(C + rr′/n)−1l.

47. For a connected, equireplicate design, let P−1 = K −NN ′/r +KK ′vr. Show
that a solution of the normal equation Cτ = Q is τ = (I/r +NPN ′/r2)Q.

48. An equireplicate, proper block design is called balanced ternary design if its
incidence matrix N = (nij) has the following properties:
(i) nij = 0, 1 or 2 and (ii)

∑
j nijnmj = λ for all i ̸= m, i,m = 1, 2, . . . , v.

Show that for such a design
∑b

j=1 n
2
ij = rk − λ(v − 1).

49. Suppose D is a connected block design. Show that the variance of the BLUE
of an elementary treatment contrast lies between 2σ2λ−1

max and 2σ2λ−1
min, where

λmax and λmin denotes the largest and the smallest positive eigenvalue of C
respectively.

50. In a connected design, show that the average variance of all elementary treat-
ment contrasts is 2σ2/H, whereH is the H.M. of the non-zero eigenvalues of
C.
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Chapter 8

Design of Experiments II

Syllabus:

1. Recovery of inter block information in BIB designs. Missing plot techniques.

2. Elementary ideas of Lattice and PBIB designs.

3. Construction of Mutually Orthogonal Latin Squares (MOLS).

4. Construction of BIBD using MOLS and Boses’s fundamental method of dif-
ference.

5. Factorial experiment: Confounding and balancing in symmetric factorial ex-
periments, Analysis.

6. Response survey designs.

8.1 Recovery of Intra-block Informations

When we discuss the intra-block analysis of block design, the block and the treatment
effects are fixed. Now we analyzed the block designs with block effects are random.

We consider only binary and proper designs. Consider the model,

yij = µ+ τi + βj + eij,

βj’ s are random variables such that,

(i) E(βj) = 0, V ar(βj) = σ2
b , Cov(βj, βj′ ) = 0, for j ̸= j′ = 1, 2, ..., b.

47
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(ii) βj’s are uncorrelated with the errors eij’s.

Now the block totals Bj’s are given by

Bj = kµ+
∑

nijτi + kβj +
∑

eij

The new error terms denoted by dj = kβj +
∑

eij. Then

E(dj) = 0, V ar(dj) = k2σ2
b + kσ2

The intra-block estimates are then obtained by minimizing the sum of squares due
to new errors, i.e.,∑

d2j =
∑

(Bj − kµ−
∑

nijτi)
2 = (B − kµJ −N

′
τ)

′
(B − kµJ −N

′
τ)

The normal equations are

−2kB
′
J + 2k2µb+ 2kJ

′
N

′
τ = 0, which implies

kµb+ J
′
Rτ = G and kRJµ+NN

′
τ = NB

Combining two equation we can write A(µ τ)
′
= (G NB)

′

Where, A =

(
bk J ′R
kRJ NN ′

)
Premultipling both side by the non-singular matrix(

I O
−RJ/b I

)
We obtain

A1(µ τ)
′
= (G NB −GRJ/b)

′

Where, A1 =

(
bk J ′R
O NN ′ −RJJ ′R/b

)
Assuming J

′
Rτ = 0 and NN

′
is non-singular, we get NN

′
τ = NB −GRJ/b, i.e.,

τ = (NN
′
)−1(NB −GRJ/b) = (NN

′
)−1N(B −GJ/b)

= (NN
′
)−1(NB − (G/bk)NkJ) = (NN

′
)−1NB −GJ/bk

and bkµ+ J
′
Rτ = G, i.e., µ = G/bk

We now have two estimators of τ , the intra-block estimator, given by τ1 = C
−
Q

and the interblock estimator.
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Let χ = p′τ be a contrast of treatment effects.
The intra-block estimator of χ, say, χ1 is

χ1 = p′τ1 = p′C
−
Q with variance, V ar(χ1) = σ2p′C

−
p.

The inter-block estimator of χ, say, χ2 is

χ2 = p′(NN
′
)−1N(B −GJ/b) = p′(NN

′
)−1NB − p′J(G/bk) = p′(NN

′
)−1NB

with variance, V ar(χ2) = σ2
dp

′(NN
′
)−1p where σ2

d = k(kσ2
b + σ2).

Two estimators χ1 and χ2 are uncorrelated, because Cov(Qi, Bj) = 0 for all
i, j.

Now, we want to combine these two estimators, to obtain an estimator with
smaller variance, the combined estimator is obtained by taking a weighted average
of χ1 and χ2, weights being the inverse of the variances of the two estimators. Thus
the combined estimator χ∗ is given by

χ∗ =
θ1χ1 + θ2χ2

θ1 + θ2
where θ−1

1 = (p′C
−
pσ2), θ−1

2 = p′(NN
′
)−1pσ2

d

But σ2, σ2
d are usually unknown.

8.2 Alternative methods due to Bose

As before, the model is

y = µJ +D
′

1τ +D
′

2β + e = (J D
′

1)(µ τ)
′
+D

′

2β + e

with the assumptions

E(e) = 0, D(e) = σ2I, E(β) = 0, D(β) = σ2
bI, Cov(e, β) = 0.

If we order the n observations, such that the first k come from the first block, the
next k come from the second block, etc. then we have

D
′

2D2 = diag(JKK , JKK , ..., JKK).

Thus, D(y) =
∑

= σ2I + σ2
bD

′

2D2 = diag(L,L, ..., L) where, L = σ2Ik + σ2
bJKK

Now,
∑−1 = diag(L−1, L−1, ..., L−1) where, L−1 = αIk + βJKK , α = σ−2, β =

−σ2
b

σ2(σ2+kσ2
b )
.
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Define, w1 = α = σ−2, w2 =
1

σ2+kσ2
b
then, β = −(w1 − w2)/k,

so that,
∑−1 = w1In − w1−w2

k
diag(JKK , JKK , ..., JKK) = w1In − w1−w2

k
D

′
2D2.

Now the normal equation for estimating linear functions of µ, τ1, τ2, ..., τv, are

(J
′
D1)

′ ∑−1(J
′
D1)(µ τ)

′
= (J

′
D1)

′ ∑−1 y.

Now, J
′ ∑−1 J = nw1 − (w1 − w2)nk/k = nw2.

Similarly, J
′

−1∑
D

′

1 = w2r
′, D1

−1∑
D

′

1 = w1R− (w1 − w2)NN
′
/k, J

′
−1∑

y = w2G

and D1

∑−1 y = w1Q+ w2(T −Q).

Therefore, the normal equation reduces to

A2(µ τ)
′
= (w2G w1Q+ w2(T −Q))

′

Where, A2 =

(
nw2 w2r

′

w2r w1R− (w1 − w2)NN ′/k

)
Eliminating µ we get

(w1(R−NN
′
/k) + w2(NN

′
/k − rr′/n))τ = w1Q+ w2(T −Q−Gr/n).

Let, C∗ = NN
′
/k − rr′/n and Q∗ = T − Q − Gr/n, then, (w1C + w2C

∗)τ =
w1Q+ w2Q

∗.

This is known as adjusted intra-block normal equation.

Also,E(Q) = Cτ and E(Q∗) = C∗τ.
Now, C∗J = 0, since the best estimate of an estimable function of treatment effects
is of the form q′(w1Q + w2Q

∗), it follows that if a linear function of the treatment
effects is estimable, then it must be a contrast. In practice, w1 and w2 will be known.

8.3 Exercise

1. Show that, for n ≥ 2, there can be at most n − 1 mutually orthogonal Latin
square of order n. Why and when Latin square design is used. 5

2. Let L(k) =
(
a
(k)
ij

)
, where a

(k)
ij = i+ jk (mod 9). Which of L(k), 1 ≤ k ≤ 8, are

Latin squares? Are L(2) and L(5) orthogonal?

3. Take two pair of MOLS of order 3 and use Kronecker product to construct a
pair of MOLS of order 9.
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4. Deduce the normal equations for Recovery of Inter- Block information correctly
stating the model.

5. The following are three key-blocks before randomization for a 24 experiments
with factors A,B,C,D

Replication I : (1), abc, abd, cd
Replication II : (1), abc, acd, bd
Replication III : (1), abd, acd, bd

Find out the effects confounded. 5

6. Construct a 26 design confounding the interaction effects ABC,CDE,ADF .

7. Construct a 25 design in 23 blocks confounding the interaction effectsABC,CDE
and keeping the treatment acd in the key block.

8. Construct a 33 design in blocks per replicate partially confounding ABC and
ABC2. 5

9. Construct a 33 – factorial design in 9 blocks of 3 plots each completely con-
founding ABC and ABC2.

10. Show that, for the 33 factorial design contrasts belonging to A and ABC2 are
orthogonal to each other. Define and give examples of generalized interactions.

11. Show that in the sn factorial the treatment groups corresponding to any inter-
action contain an equal number of treatments from each of the groups of any
other interaction and hence show that the contrasts for the two interaction are
orthogonal.

12. What is the maximum number of factors to save interactions up to a given
order for a given block size. Give argument to justify your answer.

13. Show that in 2n experiment the main effects and interaction are mutually
orthogonal contrast.

14. Write down the independent treatments in the key block of size 32 of 313

factorial such that no main effect and two factor interactions confounded.
Obtain the independent interactions confounded.

15. Construct an initial block of (34, 32) factorial design such that ABC2 is con-
founded and ab2c is an treatment combination applied in the initial block.
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16. Given the following key blocks of 28 plot factorial in 23 blocks, find the inter-
action confounded. 

A B C D E F G H
0 1 1 0 1 1 0 1
1 1 0 0 0 0 1 1
1 1 1 1 1 0 0 0
1 0 0 1 0 1 0 1
0 1 0 1 0 1 1 0
1 0 1 0 1 1 1 0
0 0 1 1 1 0 1 1
0 0 0 0 0 0 0 0


.

17. Find the confounded interactions separately for five replications of the factorial
25 in 23 plot such that confounding is balanced for the second and third order
interactions.

18. Given that the following three independent interactions .ABCD,BEFH,ABGH
are confounded in 28 factorial having blocks of 25 plots, Find the key block.

19. Show that the total number of solutions of the following k equations is sn−k

for every choice of (α1, α2, . . . , αk) :

p11x1 + p12x2 + · · ·+ p1nxn = α1

p21x1 + p22x2 + · · ·+ p2nxn = α2

. . . . . . . . . . . . . . .

pk1x1 + pk2x2 + · · ·+ pknxn = αk

where the coefficient pij’s and αi, (i = 1, 2, . . . , k) and the solutions are in
the finite field GF (s), where s = pm and p is a prime.

20. Let M be the module consisting of residue classes mod 5 and to every ele-
ment a of M , let their correspond three treatments a1, a2, a3. Consider the set
of following seven blocks:
{(01, 11, 02), (02, 12, 23), (03, 13, 21), (01, 21, 32), (02, 03, 32), (03, 23, 01), (01, 22, 13)}.
Verify the conditions of Bose’s first fundamental theorem on method of differ-
ences. Hence construct a suitable BIBD using these blocks as initial blocks.

21. Construct a BIBD with parameter v = 15 = b, k = 7 = r, λ = 3, using
Hadamard matrix.

22. Describe the method of construct a BIB design with parameter v = 4t− 1 =
b, k = 2t− 1 = r, λ = t− 1, using Hadamard matrix.
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23. Test whether the following design is variance-balanced or not:
(1, 2); (1, 3); (1, 4); (2, 3); (2, 4); (3, 4); (1, 2, 5, 5); (1, 3, 5, 5); (1, 4, 5, 5); (2, 3, 5, 5);
(2, 4, 5, 5); (3, 4, 5, 5).

24. Using finite geometries construct the following BIBD:
v = 15, b = 35, k = 3, r = 7, λ = 1
v = 40, b = 40, k = 13, r = 13, λ = 4
v = 27, b = 39, k = 9, r = 13, λ = 4.

25. Let v = 4t+3 be prime or prime power and x be a primitive element of GF(v).
Suppose x0 + x = x2a an even power of x, then show that the initial blocks
(0, xj, x2a+i), i = 0, 2, . . . , 4t provide a solution for BIBD with parameters v =
4t+3, b = (2t+1)(4t+3), r = 3(2t+1), k = 3 = λ. Can we construct the same
series of BIBD design through the method of difference if x0 + x = x2a+1, an
odd power of x.

26. Let the incidence matrix of a design with v = 5, b = 8 as below:
11102000
11010200
10110020
01110002
00001111

 .

Show that the design is variance-balanced.

27. A v × b matrix D with entries −1, 0, 1 is said to be a balanced orthogonal
design (BOD) if (i) the inner product of any two rows of D is zero, and (ii)
when the −1’s in D are replaced by +1’s the resultant matrix becomes the
incidence matrix of a BIBD with parameters v, b, r, k, λ. Show that a necessary
condition for the existence of a BOD is that λ is even.

28. Describe the method to construct a BIB design with parameters v = 4t− 1 =
b, k = 2t− 1 = r, λ = t− 1 using Hadamard matrix.

29. State Bose’s first and second fundamental theorem on method of differences.

30. Define A- optimality in connection with intra block model and the inference
problem P : η = Lτ with LJ = 0. Prove that, for a given b, v, k(< v), a
BIBD is A- optimal for estimating all elementary contrasts in the class of all
connected incomplete block design.

31. Prove that for a resolvable BIBD with incidence matrix N , Rank(N) ≤ b −
(r − 1). Hence obtain Bose inequality for resolvable BIBD.
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32. Let v = 4t + 1 be a prime or a prime power and let x be a primitive element
of GF (v). show that the t initial blocks (xi, xi+1, xi+2, . . . , xi+(k−1)t), i =
0, 1, 2, . . . , t−1 provide a solution to the BIBD with parameters v = tk+1, b =
t(tk + 1), r = tk, k, λ = k − 1.

33. Let v = 10t+ 1 be a prime or a prime power and let x be a primitive element
of GF (v). show that the t initial blocks (xi, x2t+i, x4t+i, x6t+i, x8t+i), i =
0, 1, 2, . . . , t−1 provide a solution to the BIBD with parameters v = 10t+1, b =
t(10t+ 1), r = 5t, k = 5, λ = 2.



Chapter 9

Stochastic Process

Syllabus:

1. Markov chain with finite state space and countable state space, Classifica-
tion of states, Chapman-Kolmogorov equation, Calculation of n-step transi-
tion probability matrix and its limit, Stationary distribution of Markov chain.
Random walk and Gambler’s ruin problem and reversibility. [14] Discrete
state space continuous time Markov chains, Poisson process. [6] Renewal the-
ory: Elementary Renewal theorem, Stopping time, Statement and uses of Key
Renewal theorem.

9.1 Exercise

1. Define autoregressive process of order 1 on stationary time series and derive
their autocovariances for different lag values.

2. Show that g(0) > |g(h)| and g(h) = g(−h) for all h and g(h) is the auto
covariance function of lag h. 5

3. For a Markov chain Xn, n ≥ 0, with a finite state space, prove that P (X0 =
x0|Xn = xn, . . . , X1 = x1) = P (X0 = x0|X1 = x1). 5

4. Suppose we have two boxes and c+d balls, of which c are black and d are red.
Initially, c balls are placed in box 1, and remainder of the balls are placed in
box 2. At each trial a ball is chosen at random from each of the boxes, and
the two balls are put back in the opposite boxes. Let X0 denotes the number
of black balls initially in box 1 and for n ≥ 1, let Xn denotes the number of

55
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black balls in box 1 after the n-th trial. Find the 2 step transition function of
the Markov chain Xn, n ≥ 0. 5

5. Consider a Markov chain having state space {0, 1, . . . , 6} and transition matrix

0.2 0 0.3 0.4 0.1 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0.4 0 0.6
0 0 0 0 0.3 0.7 0
0 0 0 0 0 0.5 0.5


Determine which states are transient and which states are recurrent. 5

6. Define waiting time distribution. Show that waiting time Sn has gamma dis-
tribution. 5

7. Let x and y are distinct states of a Markov chain having d(< ∞) states and
suppose that x leads to y. Let n0 be the smallest positive integer such that
P n0(x, y) > 0 and let x1, . . . , xn0−1 be states such that

P (x, x1)P (x1, x2) · · ·P (xn0−2, xn0−1)P (xn0−1, y) > 0.

Show the followings:
(a) x, x1, . . . , xn0−1, y are distinct states.
(b) n0 ≤ d− 1
(c) Px(Ty ≤ d− 1) > 0. 4+2+4

8. Suppose that ηn particles are added to a box at time n = 1, 2, . . . , where ηn’s
are independent and have a Poisson distribution with common parameter λ.
Suppose that each particle in the box at time n, independently of all other
particles in the box and independently of how particles are added to the box,
has probability p < 1 of remaining in the box at time n + 1 and probability
q = 1 − p of being removed from the box at a time n + 1. Let Xn, n ≥ 0
denotes the number of particles in the box at time n.
(a) Show that Xn, n ≥ 0 is a Markov chain.
(b) Let X0 have a Poisson distribution with parameter t. Show that Xn has a
Poisson distribution with parameter tpn + λ

q
(1− pn).

(c) Further show that E(Xn|X0 = x) = xpn + λ
q
(1− pn). 3+3+4

9. (a) Find the two-step transition matrix P (2) for the following problem: a person
starts a game with one rupee. If he has loses, he has to pay one rupee and if
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he wins he will get one rupee. If he have either two rupees or no rupee, then
he quits the game. 3

(b) Let π be a stationary distribution of a Markov chain. Suppose that y and
z are two states such that for some constant c, P (x, y) = cP (x, z) for all
x ∈ S. Show that π(y) = cπ(z). 4

(c) Prove that

Px(Ty ≤ n+ 1) = P (x, y) +
∑
x ̸=y

P (x, z)Pz(Ty ≤ n), n ≥ 0

and ρxy = P (x, y) +
∑
z ̸=y

P (x, z)ρzy. 3

10. (a) Define stationary time series, describe clearly strict and weak stationarity
in this context.

(b) Consider the Ehrenfest chain with d = 3. Find the stationary distribution
and limn→∞ P n, where P is the transition matrix. 5+5
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