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PREFACE

In the Spring of 1980 the final quarter in a three-quarter graduate
course on applied statistics at Stanford University was devoted to a study
of the techniques used in analyzing survival data. Brad Efron suggested
that it would be worthwhile writing notes for these lectures, and the con-
tents herein represent that effort.

Bill Brown gave assistance and encouragement along the way. Jerry
Halpern and Terry Therneau contributed some valuable comments. Elaine Ung
read the notes very carefully and pointed out a numbe} of misprints and
inaccuracies.

Karola Decleve did a superb job of quickly but carefully typing the
notes to keep up with the lectures and then making the necessary changes
at the close of the quarter.

This work was partially supported by the National Institute of General

Medical Sciences Research Grant GM21215.

Stanford, California Rupert Miller
July 1980 Gail Gong
Alvaro Munoz
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I. Introduction to Survival Concepts

Consider the random variable T > 0 , which we will think of as the
lifetime or the survival time of, say, a patient or a lightbulb. We want
to know how long the patient or the lightbulb will last. (We mention that
although T is usually construed as time, there are situations when this
is not true. For example, let T be the number of dollars that a health
insurance company pays in a particular case. In some cases, a patient's
illness is over and T is observed. But in other cases, a patient is still
sick. The insurance company has already paid a certain amount Y but it
will probably have to pay more.)

Let T have density f(t) and distribution function F(t) . Define

S(t) = 1-F(t) = P{T > ¢t} ,

the survival function of T , and define

the hazard rate or hazard function. ' (Historically in epidemiology, A(t)

was called the force of mortality.) . The hazard rate has the interpretation

~

A(t)dt = P{t < T < tHdt|T > t}

=p expiring in the
interval (t,t+dt)

survived
past time t

Integrating A(t) ,



ft A(u)du = Jt AW g - log(1-F(u)) -
0 - IFFW 0

= -log(1-F(t)) = -log S(t) ,

which leads to the important expression

t
—J A(u)du

S(t) =e 0 .

Notice that F(+®) =1 (i.e., S(H®) =0) iff fg Af(u)du = o« ,

Note that the abo#e concepts can be extended to the case when T does
not have a density, that is, when the d.f. F has jumps. Our convention
will be to assume continuity, but to modify concepts and formulas to include
jumps in the d.f. when it is important to do so.

Reference:

Leavitt and Olshen, unpublished report (1974), give the insurance

example.

Types of Censoring:

Everything we have talked about so far can be found in any basic
statistics course. What distinguishes survival analysis from other fields
of statistics is censoring. Vaguely speaking, a censored observation con-
tains only partial information about the random variable of interest. We
will talk about three types of censoring.

Let Tl’ TZ’ cens Tn be iid each with d.f. F .

a) Type I censoring ‘ .

Let t. be some (preassigned) fixed number which we call the fixed

censoring time. Instead of observing Tl, e Tn (the random variables

of interest) we can only observe Yl, cens Yn where



T if T, <t ,
£, if £ <T

i

Notice that the distribution function of Y has positive mass P{T > tc}3>0

at y =t .

b) Type II censoring

Let r < n be fixed, and let T(l) < T(2) < ,.. < T(n) be the order

statistics of Tl, TZ’ ey Tn . Observation ceases after the rth failure

SO we can observe T(l)’ cens T(r) . The full ordered observed sample is

Ty T
Yoy =T
Yet1) = Ty
Y@y ~ T -

Both Type I and Type II censoring arise in engineering applications.
In such situations, theretis a batch of transistors or tubes; we put them
all on test at t = 0 , and recofdvtheir times to failure. Some transistors
may take a long time to burn out, and we will not want to wait that long to
end the experiment. Therefore, we might stop the experiment at a prespecified
time tc s in which case we have Type I censoring, or we might not know
beforehand what value of the fixed censoring time is good so we decidg to
wait until a prespecified fraction r/n of the transistors has burned out,

in which case we have Type I1I censoring.



¢) Random censoring

Let Cl’ C2’ cens Cn be iid each with d.f. G . Ci is the censoring

time associated with Ti . We can only observe’ (Yl,Gl), ...,(Yn,an) where

Y,
i

min(Ti,Ci) = Ti A Ci ’

1 1if Ti is not censored,

O
]

I(Ti < Ci)

0 if Ti is censored.

S

12 e O

contains the censoring information. (In Type I and Type II cemsoring we

Notice that Yl’ cees Yn are iid with some d.f. H . Also §

also were able to obServe which items were censored, but since it was easy

to see which ones these were, we didn't need to define the Gi's explicitly.)
Random censoring arises in medical applications with animal studies or

clinical trials. In a clinical trial, patients may enter the study at

different times; then each is treated with one of several possible theranies.

We want to observe their lifetimes, but censoring occurs in one of the

following forms: |

(1) Loss to follow up. The patient may deéide to move elsewhere;
we never see him again.

(2) Drop out. The therapy may have such bad side effects that it is
necessary to discontinue the treatment. Or the patient may still
be in contact (he hasn't moved) but he refuses to continue thé
treatment.

(3) Termination of the study.

The following'picture illustrates a possible trial:

SV



patient 1: —e T +
I8 1 T,
patient 2: o - - - =~
T+
patient 3: 0~——————0—3— - -
time - end lof study

Here, patient 1 entered the study at t = 0 and died at T1 to give an
uncensored observation; patient 2 entered the study and bv the end of the
study he was still alive resulting in a censored observation T; ; and
patient 3 entered the study and was lost to follow up before the end of
study to give another censored observation T; . |

With random censoring we will make the following crucial assumption.

Assumption: Ti and Ci are independent.

Without this assumption few results are available. It seems justified with
random entries to the study and randomly occurring losses to follow up.
However, if the reason for dropping out is related to the course of the

“therapy, there may well be dependence between Ti and Ci .

d) Other types of censoring

There are other types of censoring which appear in the literature. The

previous types of censoring fall under the heading of right censoring: if

the random variable of interest is too large, we do not get to observe it

completely. There is also left censoring. For example, in random left cen-

soring, we can only observe (Yl,el), ceny (Yn,en) where

Y

i max(Ti,Ci) =T, , C,

i i?

€4 I(Ci < Ti) .



Example. African Children

Here both right and left censoring are present. A Stanford psychiatrist
wanted to know the age at which a certain group of African children learned “
to perform a particular task. When he arrived in the village, there were
some children who already knew how to perform the task so these children
contributed left-censored observations. Some children learned the task
while he was present and their éges could be recorded. When he left, there
remained some children who had not yet learned the task, thereby contributing
to right-censored observations.

References:

Leiderman, et al., Nature (1973). -

Turnbull, JASA (1974).

Both right and left censoring are special cases of interval censoring

in which we may only get to see that the random variable of interest falls

in an interval.A.If Ti is random right censored, we get to observe that Ti *
falls in the interval [Ci,W) , and if Ti is random left censored, we get

to observe that Ti falls in the interval (—m,Ci] . There are examples

of more general interval censoring.

In contrast to interval censoring there is truncation in which if the
random variable of interest falls outside some interval, even its existence
is unobserved. For example, suppose we want to get the distribution and
expected size of a certain organelle in the cell. Because of limitations
on the measuring equipment, if an organelle is below a certain size, it
cannot be detected.

Alternative notation:

We have adopted the notation that Ti is the survival time, Ci is
the censoring time, and the observed random variables are Yi = Ti A Ci

and 6i = I(Ti < Ci) . There are other notations in the literature.



(i) Xi ~ F 1is the survival time,

=<
4

G 1is the censoring time,

N
1

= '
Xi/\ Yi ~ H and 61 I(Xi < Yi) are the observed r.v.'s.

This is an appealing notation because it is easy to keep track of the
r.v.'s and the d.f.'s. But we will be studying regression later, using X

as the independent variable.

(ii) Xg ~ FO is the survival time,

Y,
i

Z,
i

14

G 1is the censoring time,

0 o0 .
Xi/\ Yi and 61 = I(Xi < Yi) are the pbserved r.v.'s.

In reportihg actual numbers, the convention is to write Ti for a non-
censored observation and TI for a censored observation. Therefore, our
data mighf consist of

5, 11+, 6.5, 14+

where the times 5 and 6.5 are not censored and 11 and 14 are censored.

ITI. Parametric Models

A, Distributions

1. Exponential

The exponential model assumes constant risk:
AMt) =X >0,
Therefore,

t
J A(u)du = Xt ,

0
- Alu)du
S(t) = e jg = e_At,
__d = -t
f(t) = - it S(t) = e s
E(T) ='% , and
Var(T) = 1
2



2. Gamma

The gamma model is a generalization of the exponential model:

a
f(t)=I'>(\oe) et A a>0,x>0.
Then,
=8
E(T) = 3 and
Var(T) = J%- .
A
Figure 1 The gamma density for
A=1 and
]
@ =3
Ob—i,
@ a=1,
E)
@ @ o-=2,
® o

Unfortunately the gamma model does not have closed form expressions'
for S(t) and A(t) .
t

S(t) =1 -f f(u)du = 1 -
0

(incomplete gamma function)
complete gamma function

3. Weibull

The Weibull model is another generalization of the exponential model:

o
s(t)=e'(>‘t) s a>0, A >0.

Then,

t
J Afu)du = (Ae)?

AE) = o A%, and

(0

£(t) = A(t) S(t) = o A()* L



4,

Figure 2
The Weibull density for

(S
®

®
Q

For the Weibull model, E(T) and Var(T) have no nice closed form
expression, but the forms of A(t) and S(t) make the Weibull model
a useful one in survival analysis.

‘Rayleigh

A(t) = A +xlt,

t
f Awde = Ay £+ 3 A, €2,

0 ° 1 : 2
—Xot - 7 >\1 t
S(t) = e , and
-A t——l— A t2
0" 271
£(e) = Ay + Ayte

The moments have no closed form expressions. The linear risk can be

generalized to polynomials:

P .
AE) = ) oA, £
i=1 *

Log Normal

Assume

log T, ~ N(4,07)

Then A(t) and S(t) have no closed form representations.



S(t) =1 -P{T <t} =1-P{log T < log t},

1-p{ioflon cdomEoly g pdopton)

The log normal distribution may be convenient for use with uncensored
data. A log transformation converts the data into the standard

linear model setup.

Pareto
Assume
= (2,0
S(t) = (t) I[a,oo)(t) ’ o > 0, a>o0.
Then,
o o
£(t) = 22 and

O T[a,@) ()

A(E)

o
t T[a,e)(®)

The moments are easily calculated, but they may be infinite.

IFR and IFRA

f or F has an increasing failure rate (we say f or F is IFR) if

A(t) 1is increasing; f or F has an increasing failure rate averace

(we say f or F is IFRA) if

t
1
T Jo A(u)du

is increasing. Analogous definitions can be made for DFR and DFRA.

constant FR IFR DFR
exponential Weibull (o > 1) Weibull (o < 1)
Gamma (o > 1) Gamma (0. < 1)

Rayleigh (Al > 0) Rayleigh (Al < 0)

Pareto (t > a)

10



The concepts of IRF and IFRA distributions are useful in engineering

applications, particularly in the study of systems of components.

biostatistics they are not usually helpful.

In

For example, in epidemiolo-

gical studies the risk for long-term survival usually has a bathtub shape

with time divided into three periods:

Ace) |
L) (2) (3) t=time
Reference:

(1) immature period
(2) adult period
(3) senescent period

Barlow and Proschan, Statistical Theory of Reliability and Life

Testing (1975).

Estimation

1. Maximum likelihood

We assume the random censoring model. (Note that this includes Type

I censoring by simply setting Ci = to -

II censoring are similar to the ones for

multiplication of some constants to take

Also, the likelihoods for Type
Type I censoring except for the

account of the ordering.)

The pair (yi,Gi) has likelihood
f(yi) if 61 = 1 (uncensored),
- L(yy,6)) =
S(yi) if §; =0 (censored),
Gi 1-6i
- £ syt

11



and the likelihood of the full sample is

n
L = L(yl,...,yn; 61,...,6n) = .g L(yi,Gi)'= (H f(y&))(ﬂ S(yia
, i=1 u c

where Hu(HC) denotes a product over the uncensored (censored) observa-

tions. Actually, the complete likelihoods under random censoring are -

f(yi)[l-G(yi)] if 8§, =1,

. 1
L(Yiﬂsi) =

g(yi) S(yi) if 6§, =0,

1

L= (1 £6p) (1 s6p) (n 56p) (11-601)
u C C u

but under the assumption that the censoring time has no connection to the
survival time, the last two products Hc g(yi) and Hu[l-G(yi)] do not
involve the unknown lifetime parameters, so these two products can be

treated like constants when maximizing L .

Let 9 = (61,...,Bp)' be the vector of parameters. TFinding max L(Q)

6
is equivalent to finding the solution 6 to the likelihood equations

3
36~ log Ly(y;,8,)
i=1 7] ~

o
[}

3
36, log L(8) =

I >~

] 3 .
= 2-557 log f4(y,) + 2-557 log Sg(yy) » 3=1, «o., p .
u J ~ c J

~

Typically, calculation on a computer using iterative methods is required.

Newton-Raphson/Method of Scoring:

Denote Li(g) = Le(yi,6i), i=1,...,n, and define

~

12



) 3 )
35 log L(g) = (36 log L(6), ...,-55; log L(g)) R
[ 2 32 7
log L(B) ... log L(B)
361861 ~ aelaep <
32
———-log L(G) = . .
86 :
32 32
log L(B) ... log L(6)
96_236 ~ 96,96 -

Then the likelihood equations are

Z——aa log L, () , i=1, «eu, D,
i
or
0 = - log L(8)
~ 00 ~0t
20 _ a0 20" P . ,
Assume © (61, e GP) is an initial guess at the solution. Expand
about 60 :
3 A 3 A0 A A0 3% ~0
Z'—§— log Li(g) = Z 5§T~log Li(g )y + Z(ek-ek) Z 55 557 log Li(g ) + ...
i i 7] k i k)
i=1 ..., p,
or
3 Ay 3 32
0 = +x log L(0) = log L(e ) + — log L(G ) (6 9 )+ ... .
~ 06 ~ 36 862

Let él be the solution ignoring second order and higher terms:

~

. 5 1 .
L 60 + {- Ji—-log L(G ) 2 log L(eo) . 1)
~ 892 30 ~

¢ D>

13



~

log L(éo) is called the score vector at 60 , and the matrix

~

2

The vector 6

2 ~
- 2 10g L8
18 26 8

He
~
@
N’
I

is called the sample information matrix at 60 . Notice that

2
1)) = &~ -
E(1(9)) = ( ® 7,30, 1°8 L(@)) 19) ,

which is the Fisher information. We point out that I(0) 4is the Fisher

information of the entire sample:
n "~
ORSIEAORES NON
i=1

where Ii(e) is the Fisher information of the ith observation.

The iteration scheme using (1) is called the Newton-Raphson method.

Replacing the sample information in (1) by the Fisher information gives

1

D>

=80+ 176" 2 105 18 (2)

~

and the iteration scheme using (2) is called the Method of Scoring. While.

(2) might produce improved convergence in some instances, it may not be
possible, particularly if censoring is present, to figure out I(8) for

use in (2).

References:

Gross and Clark, Survival Distributions (1975), Ch. 6.

Rao, Linear Statistical Inference (1965), 302-309.

Kalbfleisch and Prentice, The Statistical Analysis of Failure

Time Data (1980), Sec. 3.7.

14



Confidence intervals and tests:

For random and Type I censoring, under smoothness éonditions,
6 2 neo, 171(0)) .

Usually for Type II censoring, this result also holds, but the proofs are
different. (The notation "2" denotes "is asymptotically distributed as".)
For testing HO: 0 = 60 or constructing confidence intervals, we have
three procedures.
(1) Wald:
8 a0y' .0y A 0\ a2
G- 16D @ -0 230 under 7, .
We can alternatively substitute I(@) for I(eo) .

(ii) Neyman-Pearson/Wilks likelihood ratio:

(6%
-2 log —

= a Xp under‘ H0 .
L(®)

(iii) Rao:

) 0,' .~1,.0 9 0 2 s
3@ log L(g ) E (9 ) 5§ log L(g ) a Xp under H0 .

Notice that Rao's method does not use the mle, so no iterative calcula-
tion is necessary. However, in addition to tests, we usually want estimates
and confidence intervals, so we would need to calculate 6 aﬁyway. Once
we have § and 5(90) » the Wald method is easy.

Under censoring we may need to replace Z(g) with %(g) because
‘calculation of E(g)_ is uéually difficult. Also, Efrqn’ahd Hinkley
suggestkthat using %(Q) is betfervthan using E(Q) for confidence in-

tervals even if I(0) can be calculated. There is not universal agreement

on this, however.

15



References:
Efron and Hinkley, Biometrika (1978).

Rao, Linear Statistical Inference (1965), 349-350.

Example 1. Exponential

Under random censoring, let

n = # of uncensored observations.
Then,
n n

n
L=)\uexp—}\Zti—)\Zci =A“exP—A.Z v s
u c i=1

n .
log L = n log A - A Z Yi o

i=1
3 n n
ax logl=5- 1 v,
i=1
A n
A= —2
xi- b
V.
i=1 1t
2 -n
_QTE log L = ——éi s
oA A
oy
i(A) = —
z AZ

~

We remark that X = nu/22=1 ¥4 1is also the mle under Type I and Type II
censoring as well as random censoring.

To construct confidence intervals and perform tests, we need the dis-
tribution of X‘.

a) If no censoring is present,

A=—D0

IZI
T,
4=t

=l |-

16



where le, ceey Tn are iid each with the exponential distribution

£ (£) = A oAt

1

Consequently, S = Z'=l Ti has the gamma density

n 2 R
so 2X Ei=l Ti ~ X, » OF equivalently,

Therefore, 2n A/X 1is a pivotal statistic and can be used for test and

confidence interval construction.

b) For Type II censoring, we can rewrite

I
Y,
i=1 *

T(l) + T(Z) + ... + T(r) + (n-r) T(r)

n T(l') + (n—l)[T(z)-—T(l)] + ... + (n—r+1)[T(r) - T(r_l)] .

Using the results about Poisson processes and exponential waiting times,

‘T(l) = {min of n iid expongntial(k) r.v.'s} ~ n Ae—nxt ’
-At
n T(l) ~ A e ,
Ty - Ty = {min of n-1 exponential()) r-V-'s}-.(n-l)Ae'(n'l)kt X

(n-l)[T(z)—T(l)] ~ Ae_xt , etc.,

and n T(l)’ (n—l)[T(z)-T(l)], e (n-r+l)[T(r)-T(r_l)] are independent, so
n
2 'Zl Yy~ Xgr

17



7 . . . ; 2 . . P
Thus, 2rA/X can be used in conjunction with a X distribution, whetre the
d.f. are twice the number of uncensored order statistics,to construct con=

fidence intervals and tests.

c) If random or Type I censoring is present, we have no recourse but

to use the asymptotic theory. From above (p.16),

~ n
)‘=n—"’
Ly
i=1 *

2 -n
_QTZ log L = ——éi 5
oA A

S0,

A2 a yeo,1y

b

n

u

where n ~ may be replaced by E(nu) if the latter is availabie.
The normaiity approximation can be improved by transforming the estimats.

By the delta method (to be discussed next), since
2
~a A
}\—vN()\’ n_'),
u
then -

log X aLLIN(lo‘g Xy ni) ‘
u

Notice that l/nu » the asymptotic variance of 1log A , does not depend on
the unknown parameter A . It is an empirical fact that transforming an

estimate to remove the dependence of the variance on the unknown parameter

tends to improve the convergence to normality by reducing the skewness.

18



Delta Method:

Suppose the random variable Y has mean U and variance 02 (denoted

2
by M"Y . (4,067)") and suppose we want the distribution of some function g(¥).

Expand g(Y) about yu
g(¥) = g(u) + (Y-1) g'(u) + ... ’
and ignore higher order terms to get

g ~ (g(w), o2(g' WD)

(where "x" denotes "is approximately distributed as"). If furthermore

Y f'N(u,cz) , then
g 2 N(gw),o%(g' @)

The delta method also has a multivariate version. Suppose

X iU (6] o]
X X Xy
~ ’ 2 1
Y o]
uY y

and suppose we want the distribufion of g(X,Y) . Then
g(X,Y) = g(u_,u ) + (X-p )'ji gl ,u ) + (Y-u ) Ji-g(u w) + ...
? x* "y x’ 989X x’ "y y’ dy x’y 3

SO

~ 2,9 \2 o 9
g(X,Y) = (g(ux,uy), cx(ax g)  + 20 g 3

2,9 |2
+ = .
£y 9% vy 8 oy(ay,g) )

If furthermore, Pﬂ a N, then g(X,Y) a N .

Y
The delta method is very useful. For example, we could use it to get an

approximate value for Var(X/¥) or Var(XY) .

19



Example 2. Weibull

Reparametrize with v = Aa so that taking derivatives is easier: ©
o o
s(t) = e~ eVt s .
o
£(t) = ya P L
Then,
L = (ya)nu(ﬂ tg—l> exp{-Y Z tg exp{ -y Z c? s
u u c
n n
-1 o
=(Yoc)u(Ht§)eXP-YZyi , )
u i=1
. n o
log L = n, log v + n log a + (a-1) Z log ti -y Z Vi s -
u- i=1
9 T h o
e log L = — -
3y 108 Y 121 i »
3 -ony no
3a log L = + g log t, -y izl ¥y log vy -

Therefore, the mle (&,?) satisfies

=]

a
yi log Yy -

N~

0= j? + Z log £, - ?
o u i=1

These equations must be solved iteratively. The Newton-Raphson method

requires the sample information matrix
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(.2 )2

—5 log L == 1log L
32 ayz 9y do

- =3 log L = - s
a0 a2
- — log L
3o,
- P

which is calculated in the Problems section. Also, the Newton-Raphson method

A ~
requires starting values YO’ 0y . To get reasonable starting values, observe

that

I
1
<
o+

S(t)

log S(t) = -yt

log(-log S(t)) = log v + o log t ,

so if we had estimates §(t1) , We coul& regress log(-log g(ti)) agéinst

log ti » and then let the regression coefficient be &0 and the constant

"be log ?0 + Possible choices of g(t) are the Kaplan-Meier estimate, which
we will discuss later, or the empirical distribution function, which ignores

censoring.

Estimation of S(t):

One of the goals of survival analysis is the estimation of the survival

function
t
S(t) = exp —,J A(u)du
0
For example, one of the yardsticks of a cancer therapy is the probability of

surviving at least five years. In the engineering literature the survival

function is called the reliability function (usually denoted R(t)), and a

possible concern is the reliability of a component after 1000 hours.

21



Once we have the mle, estimation of the survival function is easy under

the exponential or Weibull model. -

-At
e

Exponential: §(t)

b
- PO PN
Weibull: §(t) = &= AD) o YE
Also, for any fixed t , §(t) is a function of A or (?,&) » 8O we can
get an approximate distribution of S(t) by using the delta method. Alter-
natively, we can take a log log transformation which usually improves the

convergence to normality.

Exponential:

s(t) = e M,

log(-log S(t)) = log A + log t ,

log(-log §(t)) = log A+ log t ,

A ~ ~ l
Var(log(-log S(t)) = — .
n )

Weibull:

o
S(t) = e-Yt s

I

log(~-log S(t)) log ¥y + a log t ,

log(-log S(t)) log ? + 0 log t ,

Vgr(log(—log S(t)) ;-22§g£l+ 2 Cov(y,a) lg%_& + Var(d) (log t)2 .
Y Y
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2. Linear combinations of order statistics

We will consider only the Weibull distribution, but the ideas which
are i1llustrated here can be generalized.

First, by reparametrizing and transforming, we can change the problem
of estimating A and o in the Weibull distribution to estimating loca-

tion and scale parameters. Rewrite

Il

o
p{y>t} = o (AE) R

exp{-exp(a(log A + log t))},

exp{- exp GlQEEEZE)}

>

where U = -log)X and 0 =1/0 . Then

P{log Y > t} = P{Y > '} ,

(3

exp{- exp Ggég)} .

From this we see that U and © are the location and scale parameters
of the random variable log Y . This is a useful observation since there
is considerable statistical theory for estimating location and scale
parameters.

Suppose we want to estimate the survival of some fixed time t .

log to - u

S(to) = pP{y > to} = expl{~ exp ( )} .

g

1 o = == —
Define Y Y/to and M, = log £, - Then

(o] —UO
S(to) = P{log Y > 0} = exp{-exp 07;—)}
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. o
and Ho and 0 are the location and scale parameters for log Y .
u
. . o
If we can construct a confidence interval for their ratio -—, then by
taking exponentials twice we would have a confidence interval for S(to) .

Johns and Lieberman use linear combination of order statistics:

n
~ 'o
U= z a, log Y, ., ,
j=1 1 @)
~ ? o
o= b, log Y,,, ,
i=1 * 1)
n - ’ n -
where Zi=l a; 1 and Zi=1 bi 0 and 815 ceey a s bl’ ey bn are

chosen to satisfy an asymptotic optimality criteria. This method is

particularly well suited for Type II censoring where

ar+1 = ,., = a = 0,

br+l = ... = bn =0,

so that the-estimates are based only on the uncensored observations.

Reference:

Johns and Lieberman, Technometrics (1966).

Extreme value distributions:

The function
Gl(x) = exp{-exp(-x)},~o < x < +w ,

is one of the three possible limiting extreme value distributions. A

limiting extreme value distribution is a distribution G for which there

exists a d.f. F such that if Xl’ cesy Xn are iid each with distribu-

tion F , then max{Xl, ceuy Xn} » Properly normalized, converges in
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distribution to G . Another limiting extreme value distribution is

exp{-(—X)a} s x<0,

G =
Z(X) 1 s X>0.

The upper tail of the Wéibull distribution is the same as the lower
tail of G2 » Properly scaled, and the upper tail of the distribution of
the log of a Weibull random variable (3) is the same as the lower tail

of Gl . The d.£f. G2 arises as a normalized limit of

max{Xl, oy Xn} - Xy

where e is an upper truncation point for F (i.e., 'F(xo) =1,

F(xo—) < 1) . Since
—max{Xl—xo, cees Xn—xo} = mln{xo—Xl, cees xo—Xn} s

a Weibull random variable can be interpreted as the minimum (i.e., first
failure) of a large number of potential failure times. The system fails

with the occurrence of the first component failure.

3. Other estimators

The estimators in this section assume the exponential model with no
censoring.

a). Bias-corrected estimators

The method here is more important than the results. Suppose we

estimate the survival with

A

§(t) = e-.}\t = e_t/T

b

where T= (1/n)22=l T Then

i
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E(S(t)) # & At |

so S(t) is a biased estimate. We can remove some of the bias by the

delta method. If we denote 6 = E(T)

>

T o t/0y (Tg) L T/
0
t3 (T-e)z[b%)z e A
6 6
- 2
e T - e t® 10 +-%-9— [613)2 - 35} O,
3
. ) 0
= 1+—1—3—2——£) 0
= 2n.2 6’| € ’
0
Therefore,
) e
S(t) = =

1,.2 22 N
1+ 2n(t AT = 2t Q)
should be a less biased estimate of S(t) than g(t) . Also it usually
turns out that g(t) has smaller mean square error than §(t) .

The jackknife estimate, which we will discuss later, produces the

same sort of bias correction.

b) Uniformly minimum variance unbiased estimators

To get an UMVU estimate of S(t) , use the unbiased estimate

U = I(T1 > t)

and the sufficient statistic

By the Rao-Blackwell theorem the UMVU estimate is E(U|S) , which in this

case is
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s(t) = E{Uls = s} = (@ —-%)n_l I(t < s)

¢) Bayesian estimates

We only mention that Bayes estimates can be derived using gamma
priors.
References:

Basu, Technometrics (1964), derives UMVUE's.

Zacks and Even, JASA (1966), compares MSE's.

Gaver and Hoel, Technometrics (1970), look at estimators in the
framework of sampling from a Poisson process.

P

C. Regression models

In medical applications the survival time may depend on the dose of
medication or radiation, and in engineering applications the lifetime of
a tube may depend on the temperature or other stress conditions.

Let Y denote the dependent variable and x denote the independent
variable. Feigl and Zelen propose two models.

. (i) The linear model

E(T) = otpx .
To get estimates, use maximum likelihood. The drawback with
this model is the possibility of obtaining a negative estimate
of E(T) when é is.negative.

(ii) The log-linear model

B(T) = aef¥
o log E(T) = log o + Bx .

Again, use maximum 1ikelihobd. This model is the precursor to

the Cox proportional hazards model.
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References:

Feigl and Zelen, Biometrics (1965), discuss the uncensored case
for both the linear and log-linear models.

Zippin and Armitage, Biometrics (1966), discuss the censored case
for the linear model.

Mantel and Myers, JASA (1971), discuss the censored case for the
multiple linear model.

Glasser, JASA (1967), discusses the censored case for the log-
linear model.

Zippin and Lamborn, Stanford University Technical Report No. 20
(1969), discuss the censored case for the log-linear model
and goodness of fit tests.

D. Models with surviving fractions

1. Single sample

Let

p = P{death} and 1-p = P{survival} ,

where the latter probability is called the surviving fraction. Assume

P{T<t|death} = 1 - e
Then the likelihood is

p)\e_)\y

o
n

if 1 (uncensored) ,
- L(y,0) =

1-p) +pe ¥ if &

0 (censored) .

To get estimates, use maximum likelihood.
Models with surviving fractions are sometimes used for short-term
experiments where one does not hypothesize that the survival function

S(t) necessarily approaches zero. Instead, S(t) may have the form:
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2. Regression

Assume
e0L+Bx
p(x) = P{death|x} = IIEEIEE .
el 1 - e o aw — - — —
p(x)
> x

This is the logistic function. Also, let

P{T<t|death} = 1-e7M

The likelihood is

p(x) Ae—ly if § =1 (uncensored) ,
L(y,8,x) =

I-p(x) + p(x) e_)\y if

[o2]
[

0 (censored) .

To get estimates, use maximum likelihood.
Reference:

Farewell, Biometrika (1977).

III. Nonparametric Methods: One Sample

A. Life tables

The classical method of estimating S(t) in epidemiology and ac-
tuarial science is the actuarial method discussed below. It depends on
the life table.
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Let time be partitioned into a fixed sequence of intervals Il,...,Ik .

These intervals are almost always, but not necessarily, of equal lengths,

and for human populations the length of each interval is usually one year.

For a life table let

n, = # alive at the beginning of L s
d, = # died during I, ,
i i
Ri = # lost to follow-up during L,
w, = # withdrew during L,
p; = P{surviving through Iilalive at beginning of Ii} ,
93 =1-p; -

Table 1 is an example of a life table. Il, I2, cany I5 each has length
one year. Column (2) contains n, , (3) contains di » (4) contains Qi .

and (5) contains woo. We want to estimate S(5 years).

Reduced sample method:

To estimate S(Tk) » use only those subjects who are at risk during

(O,Tk] s the entire interval of interest. Let

Poa -1
n, - 2, - w
S = R LT

n=
)
d = d, ,
i=1 *
3 = d

For the example of Table 1,
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n

= 126-12-54 = 60 ,
d =56 ,
A 56 _ -
S(5 years) =1 - %0 = 0.078 .
The drawback with the reduced sample method is that it ignores the information o

that is contained in li and wi . It is a biased (downward) estimate of
s(t) .

Actuarial method:

We can break up the survival probability S(Tk) into a product of

probabilities:

s() = P{T>Tk} .

P{T>T } P{T>1,[T>1y} ... p{T>T, |T>7, 1,
=Pl'p2 coe Pk’ » *
where

p; = P{T>Ti|T>Ti_ }.

1

The actuarial method gives an estimate for each P separately énd then

multiplies the estimates together to estimate S(Tk) . .
For an estimate of P, » We could use 1 - di/ni » 1f there were no

losses or withdrawals in Ii' However, with Qi and W; nonzero, we assume

that, on the average, those individuals who became lost or withdrawn during

Ii were at risk for half the interval. Therefore, define the effective

sample size
)

I DA
n; =n, - 2(21 + wi) .

and

-
i

2

(g ¥
]

o>
1l
=
|
0
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The actuarial estimate is

x

S(r,) = I 3, .
k 1=1 i
For the example of Table 1, columm (6) contains ni s (7) contains 31’

(8) contains ﬁi » and in column (9) we see
§(5 years) = 0.44 .

There has been work on trying to find an improved substitute for the
effective sample size, but if a finer estimate of S(t) is required, the
product-limit estimator of Kaplan and Meier is the approach to take.

Variance of §(Tk)

To estimate the variance of S(Tk) , consider

A k "
log S(Tk) = .Z log P; -
i=1

Assuming né Si S Binomial(ni,pi) » the delta method implies

2 p;gq q
~ ~ ~ d 1 i 1 i
Var (log pi) = Var(pi) (3—5; (log pi)) =-:;§__. ;E = ni » .

and assuming log ﬁ.

FERREE log sk are independent,

Var (log S(Tk)) = _Z nl p. ?
i=1 i i

. . ] a k 4

Var(log S(t,)) = = VT
K7 gmmy Py g2y ni(ng=dy)
Now using the delta method again,

N VRN ‘Z‘ dy

Var(s(t,)) = s°(1,) PO o il
k K gop nymymdy)

which is called Greenwood's formula.
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Types of life tables:

Table 1 is an example of a cohort life table. A cohort is a group of

people who are followed throughout the course of the study. The people at
risk at the beginning of the interval Ii are those people who survived
(not dead, lost, or withdrawn) the previous interval Ii—l . Another type

of life table is the current life table.

In a current life table a group of people with age T, ; are considered
to be at risk at the beginning of the interval Ii = (Ti_l,Ti] , and this
group of people is completely different from those at risk in the previous
interval Ii—l - Typically, different age groups in the population are

followed at the same time.

References:

Berkson and Gage, Proceedings of Staff Meetings of the Mayo Clinic (1950).

Cutler and Ederer, J. Chronic Diseases (1958).

Elveback, JASA (1958).

Chiang, Stochastic Processes in Biostatistics (1968), Chapter 9.

Breslow and Crowley, Ann. Stat. (1974). .

B. Product—limit»(Kaplan—Meier) estimator

The product-limit (PL) estimator is similar to the actuarial estimator

except the lengths of the intervals Ii are variable. 1In fact,.let Ty »

the right endpoint of Ii » be the ith ordered censored or uncensored obser-

vation.

Caamime N
[l

[
S
=

N
-~

w
Dl

4){
1 T2 T3 Ty

14] ( In ]
6 X
T T

=
[l

censored

>
it

uncensored
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Recall that we observe the pairs (Yl,dl), ey (Yn,6n) .- For now,
assume no ties. Let Y(l) < Y(Z) < ... < Y(n) be the order statistics of
Yl’ Yo aees Yn » and with an abuse of notation, define G(i) to be the value
» L4 » = 6. = . L
of & associated with Y(i) , i.e., 6(1) j when Y(i) YJ Note that

6(1), cses G(n) are not ordered. Let R(t) denote the risk set at time ¢t ,

which is the set of subjects still alive at time t- , and let

n, = # in ﬁ(Y(i)) = # alive at time Y(i)_ s

d; = # died at time Y(i) s

p; = P{surviving through Iilalive at beginning of Ii} = P{T>Ti|T>Ti_1} R
q; = l—pi .

From the estimates

d.
o =t
9 4, °

i

_
1- n, if S(i) = 1 (uncensored) ,
pi=l—qi=
1 if G(i) = 0 (censored) ,

the PL estimate when no ties are present is

Swy= 1 p= T -
y(i)fp u:y(i}it i
S,. ' S,

= (1__1_)(1)= I (1_____}11_)(1)

¥, <t oy ¥, <t n=t

(i) 1)y

- n-i (1)
- II<t (n—i+l) *

V@)=

Reference:

Kaplan and Meier, JASA (1958).
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Notes:

(i) For tied uncensored observations, suppose just before time
t , there are m individuals alive, and at time ¢t » 4 deaths occur.
Split the time of the d deaths infinitesimally so that the factor for
the d deaths in the product-limit estimator is

a-Ha-2o...a

1, m- -
—=)... 2y & m-d

1 _ 2 m-d
m—d+l) = ( m m—l)"'(m-d+l) m

(ii) If censored and uncensored observations are tied, consider

the uncensored observations to arrive just before the censored observations.

(iii)  If the last (ordered) observation Y (n) is censored, then

for g(t) as defined above

lim S(t) > 0 .
t>oo

Sometimes it is preferable to redefine S(t) = 0 for t > y(n) or

to think of it as being undefined for t > y(n) if 5(n) =0 .

From Notes (i) and (ii), by letting

Y@y V@) <t SV
denote the distinct survival times and
5 _ 1 if the observations at time ykj) arg uncensored,
3 - 0 if censored,

ny = # in R(y'(j)) s

(=N
Il

# died at time yzj) s

the PL estimate allowing for ties is

8.
. d, d.\ (3)
S(t)= 11 l—'—J‘ = i ( —;i

yl, < 7y Po<t ‘
MY ()< TS ’

Example. AML Maintenance Study

A clinical trial to evaluate the efficacy of maintenance chemo-

therapy for acute myelogenous leukemia (AML) was conducted by Embury
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et al. at Stanford University. After reaching a state of remission through
treatment by chemotherapy, the patients who entered the study were randomized
into two groups. The first group received maintenance chemotherapy; the
second or control group did not. The objective of the trial was to see if
maintenance chemotherapy prolonged the time until relapse, i.e., incrazsed
the length of remission.

For a preliminary analysis during the course of the trial the data (on
10/74) were as follows:

Length of complete remission (in weeks)

Maintained group:

9, 13, 13+, 18, 23, 28+, 31, 34, 45+, 48, 161+ .

Non-maintained group:

5, 5, 8, 8, 12, 16+, 23, 27, 30, 33, 43, 45 .
The Kaplan-Meier product-limit estimator for the maintained group is

computed as follows:

S(0) =1

$(9) = 8(0) X %g— = .91
$(13) = §(9) x 196' - .82
518) = 513) x L= .72
5(23) = §a8) x &= a1
S(31) = 5(23) x ¢ = .49
836) = 531 x 2 = .37
S(48) = 5(34) x 1 = .18

Figure 3 exhibits the PL estimators for the maintained and non-maintajned

groups.
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Figure 3 ¢
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Reference:

Embury et al., Western J. Medicine (1977).

Variance of §(t):

Using the same arguments as for the variance of the actuarial estimate,

we can get in the case of no ties

A

A~ ~ A q'
var(S(t)) = §%(t)  J 1

~ b

V)<t Py Py

8
a2 (i)
=s%t) ]} s w o e el
Y(i)fﬁ (n-1) (n-i+1)

With ties present

~ A A 6' d.
var(S(e)) = 8%y § —D 4
_ y' et n.(nj-dj) i
(3)-—
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These formulas are referred to as Greenwood's formula as well.

The justification for these formulas is not as clear as in the case of
life tables because the number of terms in the product is random and there
is more dependence between the terms. However, they can be justified as
approximations to the asymptotic variance of g(t) to be given later.

Thomas and Grunkemeier study three different methods of confidence
interval construction. One uses the approximate variance V;r(g(t)) .
Also, see the comments on page 100,

Reference:

Thomas and Grunkemeier, JASA (1975).

Properties of the PL estimator

1. Redistribute—~to—-the-right algorithm

Efron introduced another method of computing the PL estimator. We
illustrate with the leukemia (AML) example (p. 36). Plot the (n=11)

survival times:

9 13 13+ 18 23 28+ 31 ... 161+
F *—%—0 3 *—b % > t

The ordinary estimate of S(t) assuming no censoring puts mass 1/11 at
each observéd time. Consider the first censored time 13+. Since a death
did not occur at 13+ but somewhere to the right of it, it seems reason-
‘able to redistribute 1/11 , the mass at 13+ , equaily among all ob-
served times to the right of 13+ . Therefore, add (%)(fi to the mass
at 18, 23, 28+, ... . Now consider the next censored time 28+ ;‘re—
diétribute -fi + C%)Cfi), the mass at 28+ , among all observed times to

the right of 28+ . Treating the other censored times similarly results

in the PL estimator.
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mass after- mass after mass after

mass at first second third A
y(i) start redistribution redistribution redistribution S(y(i)) .
9 1/11=.09 .09 .09 .09 .91
13 .09 .09 , .09 .09 .82 .
134 .09 0 0 0
18 .09+(1/8) (.09)=.10 .10 .10 .72
23 E .10 .10 .10 .61
28+ .10 0 0
31 .10+(1/5) (.10)=.12 .12 .49
34 E .12 .12 .37
45+ .12 0
48 | 124(1/2)(.12)=.18 .18
161+ D .18 i

The difference between the last column and one minus the cumulative sum
of the penultimate column is due to rounding.

Reference:

- Efron, Proc. Fifth Berkeley Symp. IV (1967), pp. 831-853.

2. Self-consistency b

A
For simplicity, we will assume no ties. An estimator sc(t) is

self-consistent if

SAC(t) =

=B

n n :
[.Zl PO+ L 0To s 8y = 1

R (4)
sc(t)

+ ———-—I(y.<t,6.=0)],
1=1 SC(y ;) ()= (1)

where SC(t)/SC(y(i)) estimates the conditional probability of surviving

beyond t given alive at Y1y Notice that (4) is equivalent to
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A _1 : _ é&(t)
sC(t) = - Ny(t) + y(Z)(t (1 6(i)) —_——S/b(y( ;| (5)
i)— i)

where
Ny(t) = i (yi>t) .

The PL estimator is the unique self-consistent estimator for

t‘iy(n) . The proof proceeds as follows.
From (5), a self-consistent estimator satisfies.
N (t
Ay( ) 5 ’
1-6,.
a- 3 _ (i) )
Y (1)<t 1800 4))

é&(t)

=< Ny(t) - | :
k 1—6(1) if y(k) i £ < Y(k+1)s k=1,2,...,n-1.
L 1=1\8C(y ()

We want to show that if SC(t) satisfies (6), then SC(t) coincides
with the PL estimator §(t) . First notice that

S(t) =1 = SC(t) 4if t < .

(v) (t) Y(l)

Also, §(t) and éb(t) are constant on [y(k), y(k+l)) for k=1,...,n-1.
Therefore, we need only show that the jump at y(k) of SC(t)' is the

same as the jump of S(t) .

(i) 1f é(k) =0, (6) implies
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Ny(Y(k)-) - 1= Ny(Y(k)) ’

~

E ) )

sc(y,. J|n -
(k) i=1 SC(y(i))

~ [ k'“]. 1-6(i)
= SC(y(k)) n - Z , fr'—‘—“—) -1,
i"l SC(Y(i))

A

50 )™

~ N (¥, 1)
= sc(y(k))[}JL__Qal__ -1

which implies
SC (y (k) ) = 8C (Y (k)—) .
Thus, éb(t) has no jump at y(k) when é(k) = 0 , and therefore

agrees with g(t) at t = Y (k)

.(ii) If 6(k) =1, (6) implies

- AL
SC(¥ (11) z
(k) k I—S(i)

a- ) ()
i=1 SC(y(i))

_ EX(y(k)) NY(Y(k)") ’
%W¢Y)H_S1Lf%m)
i=1 SC(y(i))

n~k 2
okt ¢y s

so SC(t) has a jump at Y (k) if G(k) = 1 with éb(y(k))/éb(y(k)-)

= (n~k)/(n-k+1) , again agreeing with §(t) at t = Y (k) *

Self-consistency algorithm:

Consider the naive estimator

R N_(t)
) =
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This estimator can be improved by iteration using

. (D
s+ (y = L - _S=7(e)
s (e) = = Ny(t) + ) o (1 81y) 0P 7|
()= (1)

In fact, §(j)(t) converges monotonically in a finite number of steps to the
PL estimator. This computational algorithm can be useful in more general
censoring problems.

References:

Efron, Proc. Fifth Berkeley Symp. IV (1967).

Turnbull, JASA (1974).

, JRSS B (1976).

3. Generalized maximum likelihoqd estimator

In the usual setup, we assume that our observation % has a proba-
bility measure PG which satisfies

dP(x) = f(x)dulx) ,
where u(§) is a dominating measure for the class {Pe} . Getting the
maximum likelihood estimator of © involves maximizing the likelihood
L(®) = £,(x) .

In our case, we assume that our observation has a probability measure PF

that depends on the unknown distribution function F . The class {PF}

has no dominating measure so we need a more general definition of maximum

likelihood.
Kiefer and Wolfowitz suggest the following definition. Let P = {P}

be a class of probability measures. For the elements P1 and P2 in p,

define
dPl(x)
£(x3P1,P)) = I +e,)
the Radon-Nikodym derivative of Pl with respect to P1 + P2 « Define

the probability measure P to be a generalized maximum likelihood estimator

(GMLE) if
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£(x;P,P) > £(x;P,P) . (7)
for any element P € p.
This definition of the GMLE includes the definition of the usual MLE.

The Kaplan-Meier PL estimator gives the GMLE of F . The proof pro-

ceeds as follows. For convenience assume no ties.

If a probability measure ﬁ gives positive probability to X, then
f(g;P,ﬁ) =0 unless P also gives positive probability to X . Thus,
to check (7) for P ¢ p it is sufficient to check it_for those P with
P{f} >.0 and in this case (7) reduces to

P{x} > P{x} . (8

Since § puts positive mass on the point x = ((yl,6l), cevs (yn,Gn)),
we need only consider probability measures P which put positive mass on
this point and sﬁow that S maximizes P{((yl,Gl), cees (yn,8n))} . For

any such P ,

=
|

= P{((yl,ﬁl), ceey (Yn’6n))} s

n Gi l-Gi
I P{T=y,;} " P{T2y,} >

i=1

a8, ; 1-8¢4)
I p. (p.+r.) ,
=t~ f3= 34

where

Py = P{T==Y(i)} and r, = P{Y(i) <Tc< y(i+1)} .

By letting any mass between V(1) and Y(i+1) tend to the left to

Y (1) for i =1, ..., n, the terms Z?(pj+rj) remain constant but the

p; are increased in the limit. Therefore,
n 6,, n l_(S(i)
- (1)
sup L= I Py z Py . $))
ri+0 i=1 j=i

From Problem (pp. 142-3), we see that (9) is maximized by
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S, . §
N (J)) €D)
i . n-j+1/ n-i+1 °
i=1
This corresponds to S . The argument for ties is identical.
References:

Kaplan and Meier, JASA (1958).

Johansen, Scand. J. Stat. (1978).

Kiefer and Wolfowitz, Ann. Math. Stat. (1956).

4. Consistency

Recall
S(t) = 8.(t) = P{T>t} = 1-F(¢) ,
*
and define S by

s* (t)

SY(t) = P{¥>t} = 1-H(¢) ,

1]

[1-F()1[1-G(t)] .

Define the subsurvival functions

P{Y>t, &=1}

s* (1) f [1-G(u) ]dF (u) ,
u t

S:(t) P{Y>t, 6=0}

f [1-F(u) 1dG(u)
t

Then,
* % %
S (t) = Su(t) + Sc(t) .
: *
We will show that S(t) can be expressed as a function of Su(t)
. ,
and Sc(t) .

%
(1) Suppose Su(t) is continuous.

*
Jt dsu(u) ) Jt - [1-G (u) JdF (v)
0 Sttt Jo F@IN-G)]

t
= log[1-F(u)]| = log s(t) .
‘ 0

b _4r(u)
0 1-F(u)



Therefore,

ds” (u)
S(t) = exp jt * L o .
0 Su(g)+Sc(u)

* *
(ii) Suppose Su has a jump at t , but § is continuous at t .

o]
S*(t+)+S*(t+)
[I-F(tH) 1[1-G(tH) ]
log : - = log ,
S* (t—)+S*(t—) [l-F(t-) H1-6 (=) ]
u c
- [1-F(eH)] _ S(t+)
= 108 TiF(e)] = 108 5y -

*
(The second equality follows from the fact that Sc is continuous

at t so G(t+)

G(t-).) Therefore,

* *
Su (t+)+S_(t+)
S(t+)

S(t-) exp<log

*0

su(t—)+sc (t=)
If the underlying distributions F and G have no common jumps,‘

then from (i) and (ii)

e ast () S” (wh)+8" (ut)
v +dz logl'1

0 S (WHSh(w) st S, (u=)+S" (u-)

%
E c
S(t) = exp cJ o » (10)
c
%
where cf denotes integration over the continuity intervals of Su and

4 *
dE denotes summation over the discrete jumps of Su . Expression (10),

called Peterson's representation, shows that S(t) can be represented

* %
as a function of Su, Sc and t , i.e.,

* %
s(t) = W(Su,Sc,t) .

Peterson's representation gives us a proof. that the PL estimator S(t)

is consistent. The proof proceeds as follows.

Define the empirical subsurvival functions
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blH

§Z(t)

Z I(y;>t, 8;=1)
i=1 1

S =L T 10,0t 6.20)
c n 178 04

i=]1
It can be seen that the PL estimator is
S(t) W(Su,Sc;t) s
provided any ties between uncensored and censored observations are inter-
preted as uncensored observations preceding censored. Notice that since

~k X N
Su is discrete, W(Su,Sc,t) involves only the summation over the discrete

. p ~k
jumps o Su .
By the Glivenko-Cantelli theorem,
%
s* NO) a.s. 2% s (0)

a% a.s.
Sc(t)'—“5> S (t) , uniformly in ¢t .

* % '
Also, V¥ 1is a continuous function of Su’ Sc in the sup norm. That is,

if
%* dek % k%
ls,=s, |l = sup s, () =5 ~(£)] » 0, and
ET)
”S _Sc II—)O’
then
% % *k k%
W(Su,Sc;t) > ‘{’(Su ,Sc ,t) .
Therefore,
S(t) = ¥(8*,8%¢e) 28 y s ;t) = S(
£) = ¥(5,,85t) 35 ( S = S(t) .
Reference:

Peterson, JASA (1977).

5. Asymptotic normality

We will show later that if F and G are continuous on [0,T] and

F(T) < 1, then
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z_(t) = v [S(t) -8(t)] ¥ 2(t) as n - w

where Z(t) is a Gaussian process with moments

E(Z(t))

]
(@]
-
>

tnty dF_(u)

cOV(Z(tl),Z(tz)) = S(tl) S(tz)

0 [-EWI?’
t.AL
1 "2
_ d¥ (u)
= 8(t;) 8(t,) . [T-F(w) I [1-A @) ] °
where ;
t
F (t) = P{I<t, §=1} = f [1-G(u) JdF(u) , .
u - 0
1-H(u) = [1-F(u)][1-G(w)] .

The proof involves hazard functions which are to be discussed in the next
section.

We remark that Zn(t) converges Weakly (E) to the Gaussian process ¢
Z(t) means'that for any Bys eees by Zn(Fl)’ e+5 2 (t)) has an asymptotic
multivariate normal distribution and the sequence of probability measures
for Zn is tight so that f(Zn) converges in distribution to f(Z) for
any function f continuous in the sup norm.

As a particular case of the above result,

t dFu(u)

R 2
s(t) 2 N{s(e), S J 5
T o [1-H(u)]

We can obtain an approximation for the asymptotic variance of S(t) .

Because F (t) = P{T<t, 6=1} and H(t) = P{Y<t} , let (assuming no ties)

) T
A _ (1)
dFu(Y(i)) = n ’
IH(y ;) = 1- L2t
-~ i-1 _ n-i+l
l—H(y(i)—) = 1 - 5 —-_..1.1_._

48



Replacement of (l—H(u))2 by (1-H(u))(1-H(u-)) 1in the asymptotic

variance and substitution of the above estimates gives

A A A2 6 i
AVar(S(t)) = 2 ét) ) n_§1)1/11-11+1 ’
Y (1)<t O
8
S IO @)

Y(i)fF (n-1) (n~i+1) °?

which is precisely Greenwood's formula.
References:
Breslow and Crowley; Ann. Stat. (1974).

Billingsley, Convergence of Probability Measures (1968), for weak
convergence,

C. Hazard function estimators

Recall that the hazard function is

f(t)

Alt) = T-F(t) °

Estimating A(t) is essentially equivalent to the difficult problem of es-

timating a density. An easier problem is estimating the cumulative hazard

function:
t

A(t) = ( A(u)du .
0
The functions A and S are related by
s(e) = & MO

For the sake of simpler notation, assume no ties. WNelson estimates A(t)

by
A A 6(i)
A(t) = Az(t) = z n—-i+l °*
V(@)=
and Peterson proposes
)
A - _ 1)
Ay (t) = Zq 1°g(l - n—i+1)
V(1)
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The two estimators are very close because for small x , log(l=x) = -x .

Peterson's estimator corresponds to the PL estimator of the survival function

A -1, (£) 8, )
S;(t) = e 1 = I (1 - n_ﬂi) = S(t) ,
Y (1)<t

while Neélson's estimate corresponds to a different estimator of the survival

function

Fleming and Harrington recommend §2(t) as an alternative estimator for
the survival function and have shown it to have slightly smaller mean square
error in some situatioms.

References:

Nelson, J. Quality Tech. (1969).

. Technometrics (1972).

Peterson, JASA (1977).

Fleming and Harrington, unpublished manuscript (1979),

vAsymptotic normality:

From standard results on (sub)distribution functions,

Jﬂ[f‘u(t)'—Fu(t)] ¥ ZFu(t) s

AlHE)-10] ¥ z ()

where ZF and ZH are Gaussian processes.
u

~ We expand K(t):
- t dF (u)
ACt) =J —
0 1-H(u-)
jt[ 1 -1 -
= | |-+ s . |lar + dF -F )] ,
0 1-H (1—H)2 ] [ u uu
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t dF £ A t d(F -F )
=f _£+J.JﬂLdF+J _uul

o ™" Jo g-m? v Jp IH Y
£t 4o (F -F ) (t) ¢ F -F

= A(t) + j -JLELE dF —"%:ﬁ%Ei—— - [ S5 dH + ...
0 (1-H) 0 (1-H)

The last equality follows from integration by parts of the last integral.

Transposing and multiplying by vn ,

R t =0 a(F ~F ) (t) (t /a(F -F )
valA(t)-A(t)] = f !Elﬂzgl dF _ + lEH(E) - J L ; dH + ... ,
0 (1-E) 0 (1-BH)
¥ Jt LI o ft = )
F +o— | —2 - gH=12(c) .
0 @-m? * TEE -y (g g2 A

The limit ZA(t) » being a weighted average of Gaussian processes, is itself

a Gaussian process with

E(ZA(t)) =0,

Biaty  ar
u

Cov(z,(ty),Z,(t,)) = J
AYTLTPEAN2 0 (1-1)2

For details, see Breslow and Crowley.

Using this result together with the approximation

S(r) = o ME)

?

we derive the asymptotic distribution of S(t)

O = MO Rey-nee O 4

e o

e

S(t) 2 S(t) - [ACE)-ACE)ISCE) + ... ,

AlR(e)-AE) IS(E) + ... ,

e

/alS(£)-5(t)]

V&

Z(t) ,
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where Z(t) 1is a Gaussian process with

E(Z(t)) =0, ‘ =
E1at dF_

Cov(Z(t,),Z(t,)) = S(t.) S(t,) f _— “
M 1 2 1 2’ §, (1-1)2

References:
Breslow and Crowley, Ann. Stat. (1974).

Aalen, Scand. J. Stat. (1976).

———, Ann. Stat. (1978).

D. Robust estimators e

In estimation problems the parameter of interest can frequently be
expressed as a functional
8 =T(F)
of the underlying d.f. F .
With no censoring present, the usual estimator is
6=1®) ,
where Fn is the empirical d.f.
With censoring present, a reasonable estimator is
6 =1(F) ,
where F = l-g and § is the PL estimator.
1. Mean
0 0 )
0 = T(F) = [0 xdF(x) = IO [1I-F(x)]dx = J S(t)dt .

Without censoring,

6 = T(Fn) = JO xan(x) =x = JO [1—Fn(x)]dx .
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With censoring,

8= 1(F) = J xdﬁ(x) = J S(t)dt .
0 0

. 2
JS S(u)du dFu(s)

1o0]

1

A1
Avar (8) == JO ;I:;?;;;E

With no ties present, '

n 2

AV;r(é) = X J §(u)du
=1 v

84
(n-i) (n-i+1)

Immediately, we have a difficulty. If y(n) is censored, then S(t)

does not approach zero as t->® , so the integrals are infinite.

We discuss three possible solutions.

(1)

(ii)

Redefinition of last observation.

Change § =0 to § =1, We illustrate with the main-
. (n) (n) :

tained AML data of Embury et al. (p. 37).

6

9 x .091 + 13 x ,091 + 18 x ,102
+23 x 102 + 31 x ,123 + 34 x ,123

+48 x 184 + (161 x ,184)

23.011 + (29.624) ,

52.635 .

The tail, and in particular the last observation, has heavy weight.
This is due both to the PL estimator putting increased weights on
the last observations and to the skewness of the distribution.

Restricted mean (Meier and Sander).

For fixed s, define a mean over (O,so] and estimate.it by
s

~ 0’\
6 = j S(t)dt .
0
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(i1i) Variable upper limit (Susarla and Van Ryzin).

Estimate
00
8 = f S(t)dt
0
with

~ nA
6 = I .S(t)dt ,
0

where {sn} is a sequence of numbers converging monotonically
to ® . TUnfortunately, the proper choice of s, depends on
F, G and there exist no good guidelines for use in practice
as yet.
References:
Kaplan and Meier, JASA (1958).

Meier, Perspectives in Prob. and Stat. (1975).

Sander, Stanford Univ. Tech. Report No. 8 (1975).

Susarla and Van Ryzin, Ann. Stat. (1980).

2. L-estimators

A basic assumption when using L-estimators is that the underlying
distribution F is symmetric about 6 . Typically survival times do not
have a symmetric distribution because they are positive. However, before
estimating we can symmetrize the data by applying a transformation, as for
example, by taking logarithms. |

An L-estimator is of the form

~ ® ~ A
6 = J xJ(F(x))dF(x) ,
-c0
where J , defined on [0,1] , is symmetric about 1/2 and satisfies

fé J(u)du = 1 . An important L-estimator is the trimmed mean with
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1
J() = 1':2—(-1- I[a,l—oc] (w) .

With censored data the asymptotic variance of an L-estimator is

tru dFu(s)

AVar(@) =-% J [ S(t) J(s(t)) S(u) J(S(u)) f dtdu .

~o  [1-H(s)1?
References:
Sander, Stanford Univ. Tech. Report No. 8 (1975).
Reid, Stanford Univ. Tech. Report No. 46 (1979} or Ann. Stat.

(1981).

3. M-estimators

Again, a basic assumption is that F is symmetric, so transform the

data first. An M-estimator 6 is the solution to
@ A
[ Y(x-6)dF(x) = 0 .
-0

The function Y(x-8) generalizes f'(x-0)/f(x-0) so M-estimators genera-
lize maximum likelihood estimators. The Tukey biweight estimator corres-

ponds to
2,2
x(1-x°) if x| <1,
P(x) =
0 if x| > 1.
In actual applications the data would need to be scaled by an appropriate

_scale estimator.

With censored data the asymptotic variance of an M-estimator is

AVar(9) = —-f 5 J S(t) ¢'(t-8)dt) dF (s) ,
o [1-H(s)] s Ep' v

where
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EY’ =J P! (£-6)dF(t) .
Referencé:

Reid, Stanford Univ. Tech. Report No. 46 (1979).

At this point in time L- and M-estimators with censored data are
experimental. Their virtues and defects have not been established. How-

ever, the median estimator is frequently used.

4, Median
- 1,1
8 =8 (2) .
A reasonable estimator for 9 is
A=A_l_];
6 =8 (2) .
If §—16%) does not have a unique solution, then define é to be the

midpoint of the interval consisting of the solutions.

S(t)

=

‘ S(t)

Nt

v

r
v
t

D>

> <-——r
N
r___

Empirical evidence suggests that this straightforward estimator tends
to be too large. The PL estimator gives increasing jump sizes with in-
creasing t , and due to censored observations dropping out, the gaps
between uncensored observations tend to increase with t . Therefore,

) tends to be too large.
A possible way to alleviate this problem is to define g(t) » a linear

smooth of §(t) , and g = §—1(%) .
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N
> t

i For example, in the maintained AML data of Embury et al. (p. 37),

S(23) = .614 ,
S(31) = .491 ,
6 =31 - 8009 _ 45 .5

(.123)

A

We need the variance of 6 . The asymptotic variance is

_ Avar §(9)

AVar @ 5
£7(0)

AVar S(8) can be estimated using Greenwood's formula, but f is an
unknown density and is difficult to estimate.
References:

Sander, Stanford Univ. Tech.Report No. 5 (1975), discusses the
asymptotic variance.

Reid, Stanford Univ. Tech. Report No. 46 (1979) or Ann. Stat.
(1981), discusses the asymptotic variance.

Foldes, Rejto, and Winter, unpublished manuscript (1978),
discuss density estimation using censored data.

Reid and Iyengar, unpublished notes (1979), consider estimates
of the variance.

Efron, Stanford Univ. Tech. Report No. 53 (1980), uses the
bootstrap to measure the variability of 8 .

E. Bayes estimators

Assume no ties. Denoting Ny(t) = #(yi > t) ,
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S(e) = T [—“—'—1——16(”
<t n-i+1 ?
Y1)y
- T [___n-i+l]_6(i> 1{n  na NEHINO
n—-i n\n-1 n-2 TN () 1 ?
Y (1)<t y
_ N_(t) " [n‘lfl]l 6(1)
n v, <t n—-i
(i)—

Susarla and Van Ryzin show that the Bayes estimator of S(t) has a similar

form:

N a(t,») + N_(t) aly, .\ ,®) + (n-i+1) 1—6(1)
= b (1)
S5,(t) =
<t

0(0,°) + n ofy,.\s®) + (n-1i)
Y(i)__ (1)

The estimator §a<t) is the Bayes estimator under the loss function
A © ~ 2
L(§,8) = J [8(t) - s(t)1aw(L) ,
0
where w is any nonnegative nondecreasing function, and with a Dirichlet
process prior Py with parameter o on the family {P} of all possible
distributions. The parameter o is a finite nonnegative measure on (0,%).

We say that the random probability measure P has a Dirichlet process

prior with parameter o if for any measurable partition B

(O’m) ]

, B of

l’ ® e k

(P(Bl),...,P(Bk)) ~ Dirichlet(a(Bl),...,OL(Bk)) .

Recall that the Dirichlet(al, cees ak) distribution has density

o,-1 az—l ak—l

f(xl,...,Xk) o Xy X, ces Xy I(xiio, XI+"'Xk =1) .

Notice that for k = 2 , the Dirichlet distribution is just the beta distri-

bution,
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Under a parametric model, we assume our observation X has distribution
Pe where 0 is picked by natﬁre according to some prior distribution. In
the nonparametric situation, we observe T with distribution P where P
is picked by nature according to the distribution Pa . In other words, our
survival time T is obtained by Pa generating P and P generating T .

A

It can be shown that !

a(A)

P;{T € A} =‘a?61;7 .

(10)

The equation (10) gives an interpretation to the parameter o . The
ratio a(A)/a(0,°) 1is our prior guess on the probability of the set A .
For example, if we believe T has exponential distribution with mean 1/)\0 s

then

a(t,®) _ e-AOt
a(0,®) :

Also, the total mass «a(0,®) represents the strength of our prior belief.
For example, «(0,®) = 10 says our prior belief is worth 10 observations.

Return to the case where
AnL

alt,© _ "0
a(o’m) = e .

Then gu(t) compares with §(t) in the following way:

= S(t)

~
~
~ -

-

Sa(t) -

> t .

S PYTN

A

Rai, Susarla, and Van Ryzin show that in many cases, Sa gives a

~ .
smaller mean square error than S , even when the prior is incorrect.
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In case of ties, the Bayes estimate is

- N R B '
oc(t,(o) + iy(t) . [Ot[y(J;), ) + Ny‘(y.(J;) )] (1) .
alv, ) n a[Y(j)sw) + Ny(Y(j))

S (t) =
! Y(Hst

References:

Ferguson, Ann. Stat. (1973), discusses the Dirichlet process prior.

Susarla and Van Ryzin, JASA (1976), derive the Bayes estimate in
the censored case.

Susarla and Van Ryzin, Ann. Stat. (1978b), study the asymptotic
behavior of Bayes estimates.

Rai, Susarla, and Van Ryzin, Rand Corp. Paper No. P-6357
(1979), look at mean square errors. : -

Ferguson and Phadia, Ann. Stat. (1979), examine more general prior
distributions.

Empirical Baves estimators:

Instead of using a prior guess 0 , we could use the sample to
estimate o . -
References:

Susarla and Van Ryzin, Ann. Stat. (1978a).

Phadia, Ann. Stat. (1980).

IV. Nonparametric Methods: Two Samples

We need more notation. For the first sample, let T,, T T

1> 722 *°" 'm

be iid each with d.f. Fl , and Cl’ C2’ ooy Cm be iid each with d.f.

Ci is the censoring time associated with Ti . We can observe

(Xl,él), cees (Xm,ém) where

For the second sample, let U

= A =
Xi Ti Ci’ Gi I(Ti<<Ci) .

1> UZ’ ceos Un be iid each with d.f, F2 s
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and D D be iid each with d.f. G

2

1> Dps =-es D . D,

associated with Uj , and we observe (Yl,el), cees (Yn

Y

j = U.A D,

i* 73 =10

€,
J

’

3 <Dy

The usual two sample problem is to test
HO: Fl = F2 .

Example. Hypothetical Clinical T:iél

In the hypothetical clinical trial constructed by
in Figures 4a,b (on the next page), let the treatment
X observations an& the treatment B patients be the

Rx A: 3, 5,

7, 9+, 18

Rx B: 12, 19, 20, 20+, 33+

A. Gehan test

Gehan's test is an extension of the Wilcoxon test.

from the two samples be

Xpseees®3 Yyhune,

n
Order the combined sample and define
Z

< Z < Z

(1) (2) **° (mtn) °
Rli = rank of Xi s
m
Ri= 1 Ry

is the censoring time

,En) where

Byron ¥m. Brown, Jr.
A patients be the

Y observations.

Let the observations

Reject H0 if R1 is too small or too large. Use small sample tables or

the large sample approximation

(mtn+l)
R,-E.(R,) R, - 2\mrovl)
1 701 - 1 2 a N(0,1) ,
/VarO(Rl) mn (mtn+1)
12
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Figure 4a

SURVIVAL TIMES FOR 10 CANCER PATIENTS RANDOMLY ASSIGNED
TO TREATMENTS A AND B (HYPOTHETICAL DATA)

Rx SEX

M ==

POorPoPro>mww>
MENETN"TTNTT

5 10 15 20 25 30 35 40 45 50
CALENDAR TIME FROM START OF STUDY

Figure 4b

SURVIVAL TIMES FROM TIME OF RANDOMIZATION FOR 10
CANCER PATIENTS — ASSUMING TERMINATION
OF STUDY AT T =40
Rx SEX

t DEATH
o SURVIVAL

A
TN

o
gt
S22 72X

| i ! i ] i | ]
0 5 10 15 20 25 30 35 40

SURVIVAL TIME
MEASURED FROM TIME OF RANDOMIZATION
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where Eo(Rl) and VarO(Rl) are the moments calculated under the null

hypothesis.

The Mann-Whitney form of the Wilcoxon test will be useful. Define

. ' o if X, > Y,
U(Xi’Yj) = Uij =( 0 if Xi = Yj .
‘—l if X1 < Yj s
m n
v= 11Uy
i=1 j=1
It can be shown that
_m(mintl) 1
Rl == + 5 U.
) To see this notice that if we have the total separation
_ m(mtl) .
X(l) < ... < x(m) < y(l) < v.. < y(n) » then R1 = > . For every in-

terchange of a contiguous =x~y pair, R. is increased by 1 , and the

1

number of such interchanges is ZiZj-%(Uij-+1) . Therefore,
. - m(mtl) 1
Ry ==7 - +1L50,;+D,
17
- n(mtl)  m 1
=T tataU,

_mmntl) | 1

3 7 U -

The Mann-Whitney test rejects H. if U or IU[ is too large.

0

small sample tables or the large sample approximation
U—EO(U)

=—2U 2 n0,1) .

Nar (@ /m(wratD)
‘ 3

For censored data, Gehan defines
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1 if we know ti > u,, i.e.,
J

(xi>yj, €j=l) or (Xi=yj’ Gi=0, €j=l) .

U,., = ﬂ 0 otherwise,
ij )
~1 if we know ti < uj, i.e.,
L (Xi<yj’ Gi=l) or (xi=yj, 6i=l, €j=0) .
m n
U= ) L U
i=1 j=1

Reject H0 if U or |U| is large. The statistic U is asymptoti-
cally normally distributed by the theory of two-sample U-statistics, but to

calculate the critical values we need to know the moments of U .

Mean and variance of U :

With no censoring, the mean and variance can be calculated using permu-

tation theory. Under HO » consider sampling m balls without replacement e

from an urn containing mtn balls labeled Zl’ ooy Zm+n « Think of the
labels on the m sampled balls as the values of Xl’ ceesy Xm , and the ¥
labels on the n unsampled balls as the values of Yl, ey Yn . Let

E0 P(U) and Var0 P(U) be the moments under this permutation model. Then,
] 9

EO,P(U) =0 = EO(U) )
VarO’P(U) = EESE%Eill = VarO(U) .

With censoring, Gehan also uses permutation theory but under the more

restrictive null hypothesis
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Let the combined sample be denoted by

(zl’Cl)’ LR (ZM,CM) .

c Consider sampling m balls without replacement from an urn containing mn

balls labeled (Zl,gl), eees ( Think of the labels on the m

Zm+l’Cm+n) '
sampled balls as (Xl,él), vees (Xm,Gm) and the labels on the n unsampled

balls as (Yl,el), cees (Yn,en) .. Then,

*
EO,P(U) o,

]

%
Var0 P(U) (4.3) on p. 206 of Gehan (1965).

The latter is a complicated expression which we will not record here because

*
Mantel's computational form for Var, P(U) is easier to work with.
s .

* :
Mantel computational form for Var P(U)
b3

(
1 if (2,02, C,=1)

Ukz = U((Zk’Ck)’(ZQ’Cﬂ,)) = < 0 OthérWise s

-1 if (2,<2y, £ =1)

. or (Zk=Z£, Ck=1, C2=0) s
Ult’nrzmuksa J
%=1
#k
mn
U= kzl U, Ik € 1,) ,

v where I1 is the set of integers comprising sample 1. Notice that U is
equal to Gehan's statistic because Uy k. = Uy X so if kys ky € 1
172

271
they cancel each other out in the sum.
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To calculate the permutation distribution of U , suppose we are given

*

* * *
Ul’ eesy U 'y Under HO » we sample m of these Uk without replacement

and form U , the sum of these m values. Using results on sampling from

finite populations,

mhn
* 1 N 2 m
Varg p (@) = m(m-l-n—l iz_l @) )(1 " o)
- ey L
(mn) (mn-1) L i’ ¢
i=1
Example:
For Brown's hypothetical clinical trial
R
Z Rx #<z >z i)
A 0 9 -9
5 A 1 8 ~7
A 2 7 -5
S 9+ A 3 0 3
12 B 3 5 -2
18 A 4 4 0
19 B 5 3 +2
20 B 6 2 +4
20+ B 7 0 +7
33+ B 7 0} +7
U = -9-7-5+3+0 = -18 ,
* AR -
EO,P(U) =0 ’
* v ,
Var, ,(u) = 30.5)Q86) _ 59 4\
> (10)(9)
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%
Under Ho s

U _ -18

S T 8.91 7
aro’P(U)

so P = ,022 is the one-tailed P-value.

-2.02 2 §(o,1) ,

References:
Gehan, Biometrika (1965).

Mantel, Biometrics (1967).

Variance under H0 :

The above results on the variance were derived under the assumption
H* F
0°F1 7 G

with the censoring patterns held fixed? Suppose

G, = G2 . What is the permutational variance under HO: F1==F2

v A

12 e '

s T, T

U Under H

is the combined sample of T 1> =res U - 0 Ve

1’

sample from the Vk without replacement and put them in the slots

(__,Cl), cees Q__,Cm); C_

’Dl)’ eeey ( ,D) .,
From here, we want to form
K285 vy Fpeb)s (Tghe0), ey (T,e)

but unfortunately, because not all the Ti’ Ci’ Uj’ Dj are observable,
not all the (Xi,éi), (Yj,ej) can be constructed.

*
Hyde compares EO(Var0 P(U)) with VarO(U) .
H

2
Varo (U) EO(U ) s

"’ (iZi jil Uij)z ’

2
m EO(Uij)4-mn(n—1) EO(UijUij')

]

+ m(m-1)n EO(UijUi'j) + m(m-1)n(n-1) EO(UijUi'j') s

%
E.(Var (U)) = sum of similar terms.
o'Vargy p
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Letting m,n+® such that m/(mn) > A , where 0 < A < 1

*
Var0 P(U)

— Yot
VarO(U) ’

b4
R™ = p~lim
m, N>

*
EO(VarO,P(U)) (11)
VarO(U) ? ‘

3 3 .
A P{clAczAc3 > TlATZATB} + (1-2) P{DlADzADB > TlATzATSI

A P{ClACZADl > TlATzAT3} + (1-1) P{clADlAD2 > Tlﬁmzﬂm3}

33 (1-2) +

From (11) we see that R2 > 3M(1-A) . If X =1/2, then R2 > 3/4 ,

*
so R > .87 . Thus, if the sample sizes are equal, SDO P(U) cannot be
4
very much smaller than SDO(U) s No matter what the censoring patterns are.

Suppose the censoring distributions are Lehmann alternatives, i.e.,

r

r
(1_G2) 2 =

1

i
o=t
i
o]

!
et
I
=

where r1 and r2 are related to

Py = P{C1 < Tl} = P{Obs. being censored in Pop. 1} ,

P, = P{Dl < Ul} = P{Obs. being censored in Pop. 2} ,
through
I R
= . = .
1 r1+1 2 r2+1

In Table 2, Hyde reports R for A = .5 under Lehmann alternatives for
varying levels of censoring probébilities 25 and Py - The table has been
partitioned to identify cases in which Ierl < .05 . Table 3 ié analogous
to Table 2 with A = .2 ,

We see from Table 2 that for equal sample sizes, the Gehan test (which

assumes equal censoring patterns) uses an approximately correct standard
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5’

¢ 8 e s 9 o o
WO

°

oNoNeoNoNoNoNoNeNoNe
\O0 00— O\\n

OOOOOSOOQO

*

9

0.00 0.10 0.20 0.30 0.4 0.50 0.60 0.70 0.80
1.0C 1.00 1.00 1.00 1.0l 1.01 1.02 1.04| 1.09
1.00 1.00 1.00 1.00 1.C0 1.01 1.02 1.04| 1.07
1.00 1.00 1.00 1.00 1.00 1.01 1.01 1.03) 1.06
1.00 1.00 1.00 1.00 1.00 1.C0 1.01 1.02 1.05
i1.01 1..00 1.00 1.00 1.00 1.00 1.00 1.01L 1.0L
1.01 1.0 1.01 1.00 1.00 1.CO0 1.00 1.01 1.02
1.02 1.02 '1.01 1.01 21.00 1.00 1.00 1.00 1.0l
1.04 1.0k 1.03 1.02 1.01 1.01 1.00 1.00 1.00
1.09 1.07 1.06{1.05 1.04 1.02 1.01. 1.00 1.00
1.20 1.18 1.16 1.15 1.11 1.09 1.06] 1.0% 1.01
Table 2

Values of R when censoring distributions are

Lehmann alternatives and A = .5

Py

0.00 0.10 0.20 0.30 0.4 0.50 0.60 0.70 0.80 0.90
1.00 1.01 1.02 1.0h 1.06 1.09 1.14 1.21 1.33 1.65
0.99 1.00 1.01 1.03 1.05 }1.08 1l.12 1.18 1.29 1.
0.98 0.99 1.00 1.01 1.03 [1.06 1.09 1.15 1.26 1.53
0.97 0.98 0.99 1.00 1.02 1.oh[ 1.07 1.12 1.22 1.h47
0.96 0.97 0.97 0.99 1.00 1.02 1.05 |1.09 1.18 1.4
0.95 0.95 0.96 0.97 0.98 1.00 1.02 {1.06 1.1k

0.9 0.94] 0.95 0.96 0.97 0.98 1.00 1.03 |1.og 1.
0.93 0.93 0.95 0.94]0.95 0.96 ©.97 1.00 1.05

0.92 0.92 0.92 0.93 0.93 0.9%410.95 0.97 1.00]1.09
0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.951 0.95

Table 3

Velues of R when censoring distributions are

Lehmann alternatives and X\ = .2
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deviation even when the censoring probabilities differ appreciably. More-
over, even when one sample size is four times the other (Table 3), Gehan's
test is using a nearly correct standard deviation for a wide range of cen-

soring probabilities.

References:
Hyde, Stanford Univ. Tech. Report No. 30 (1977).

Gilbert, Univ. Chicago thesis (1962), was the first to calculate
VarO(U) .

B. Mantel-Haenszel test

Single 2 X 2 Table:

Suppose we have two populations, and an individual in either population
can have one of two characteristics. For example, Population 1 might be
cancer patients under a certain treatment and Population 2 cancer patients
under a different treatment. The patients in either group may either die

within a year or survive beyond a year. The data may be summarized in a

2 x 2 table.
Dead Alive
Pop. 1} a b ny
Pop. 2| ¢ d n,
my m, n
Denote
Py = P{Dead|Pop. 1} and P, = P{Dead|Pop. 2} .
To test
Hy:ipyp =Py
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use the statistic

2
2 =[— P1~ Py _ n(ad-be)?
n,n, m.m
[ﬁu—p) G+ LEL2
1 2
where
~ a ~ c ATy
P1=n_1's p2=n_2, P=_;1_’
or, including the continuity correction,
n, 2
2 _ n(|ad—bc|-2)
Xe

v R
2 . . ; 2 . . . .
X is approximately distributed as Xy - This is an approximation to the
exact discrete conditional distribution under H0 . Given 0y, Dy, My, W,
fixed, the random variable A , which is the entry in the 1-1 cell of the

2 X 2 table, has a hypergeometric distribution

n

o - L))
()

1

The first two moments of the hypergeometric distribution are

Yy

EO(A) = n
n.n,m,m
VarO(A) = —liz—l~g .
n” (n-1)

Consequently,

ad-bec = n(a—EO(A)) s

2
nyn,mm, = n (n-1) VarO(A) s

i 2
2 _ n(ad-bo)? _ n | ¥EW

nynymm, o=l /Varo(A)

X
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Sequence of 2 X 2 Tables:

Now suppose we have a sequence of 2 X 2 tables. For example,we might
have %k hospitals; at each hospital, patients receive either treatment 1

or treatment 2 and their responses are observed.

D A D A
n
Treatment 1 ay M1 A kl
Treatment 2 n12 nk2
e B o I B | M1 M2 Tk
Hospital 1 Hospital k

Because there may be differences among hospitals, we do not want to combine

all k tables into a single 2 X 2 table. We want to test

Ho P P11 = Prgs vos Pyg = Py o

where

Pi1 P{Dealereatment 1, Hospital i} ,
Pip = P{Dealereatment 2, Hospital i} .

Use the Mantel-Haenszel statistic

k
) (a;~Eg(a,))

vy = =1 .

k
izl Varo(Ai)

Including the continuity correction, the Mantel-Haenszel statistic is

k
§ (a,Eg(a,))

MH = =1 .

¢ k
\/ Zl Var (a))
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Lininger et al. show that including the continuity correction is very con-

servative.

If the tables are independent, then MH a N(0,1) either when k is

fixed and n,> © or when k + ® and the tables are also identically dis-

tributed.

In survival analysis the MH statistic is applied as follows. Recall

that (Z(l)’c(l))’ cees (Z(m+n)’c(m+n)) is the combined ordered sample.

Construct a 2 X 2 table for each uncensored time point.

X

{ X 0 y 0 0 X > t

“(D “(2) 3w G “(6)**(7)

‘T ‘@0t f w0 t™ Syt tenT

D A D A D .A
X 1 X 0 X 2
Y| O Y ‘1 Y | 0

nl nz n3

Compute the MH statistic for this sequence of tables to test HO: Fl = F2 .

The tables here are not independent because, for example, R(z(l)) and
R(Z(S)) almost coincide. But asymptotic normality still holds, as we will

argue below. Varying censoring patterns have no effect on the MH statistic.

Example:

The computations for the MH statistic in Brown's hypothetical clinical
trial are given in Table 4. The column labeled =z contains the uncensored
ordered observations. The next four columns labeled n, m, Ny, @ con-

struct the 2 X 2 tables. The next column is EO(A) = nlmlln . The
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product of the last two columns, labeled ml(n—ml)/(n—l) and (nl/n)(l—nl/n),
is VarO(A) ;3 it is convenient to break up the calculation of VarO(A) in
this way because ml(n—ml)/(n—l) is usually equal to 1 and (nl/n)(l—nl/n) is

the product of the proportions in the two samples.

z n mony a EO(A) a—EO(A) Tlégiﬁlz 2%(1-—2%)
3 10 1 5 1 .50 .50 1 .2500
5 9 1 4 1 A .56 1 .2469
8 1 3 1 .38 .62 1 L2344
2 6 1 1 0 .17 .17 1 .1389
18 5 1 1 1 .20 .80 1 .1600
19 4 1 0 0 0 1 0
20 31 0 0 1 0

Table 4. Computations for the Mantel-Haenszel statistic in Brown's
hypothetical clinical trial.

sum of a-E;(A) column

m, (n-m, ) n n
jsum of (*l——*—-!l— col. X—;}-(l——r-}-) col.)

MH =

3

n-1

2.31 _
TS5 = 2.26 .

g
1l

.012 (one-tailed) .

_ 2.31-0.50
c 1.02 ’

1.81

1.02 = 1.77 .

Lav)
1]

.038 (one-tailed) .
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Asymptotic normality:

To show asymptotic normality, we adapt Crowley's representation to

our case. Assume no ties.

. Denote
N=m+n ,
1 N
H(t) = % Z I(z; <t),
i=1
() =3 1 I <t),
i=1
1 N
. H(t) =% _Z Iz, <t, ¢y =1),
i=1
. Hlu(t) =2 . I(Xi <t, 61 = 1) .
i=1
Then the numerator of MH is
e li' *® A~ © 1 ~ Hl(s_) ~
(a, - EA,)) = m [ d 34, (s8) - J ——— d H (s) .
j=1 1 i o 0 1-Tfi(s) u

To see this, recall that E(Ai) = milnillni where a;> Myys Ngqs ni. are

gotten from the 2 X 2 table corresponding to the ith uncensored obser-

vation:

il

m, R
il i

Because we have assumed no ties, my = 1 . Letting sS4 denote the time

of the ith uncensored observation,
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=}
n

¥ . 2 Y —
i1 #(X's remaining at time 4 ),

m(1l - ﬁl(si~)) .

=]
|

= #(Z's remaining at time si—) .

N(L - ﬁ(si-)) .

Now that we have the numerator of MH expressed in terms of empirical
(sub)distribution functions, we may apply arguments similar to those used
in showing the asymptotic normality of the PL estimator.

References:

Mantel and Haenszel, J. Natl. Cancer Inst. (1959).

Crowley, JASA (1974).

Lininger et al., Biometrika (1979).

C. Tarone-Ware class of tests

After constructing a 2 X 2 table for each uncensored observation,

Tarone and Ware suggest weighting each table, forming

m, n,
~34;—331 . (12)

k k v

PIRACER IS Wi[%i Y

=1 i=1 i
For the variance, use

k k m,.(n, - m,, qr/mn, n.
JERSR JF CICELE, (TR I

i=1 i=1 * oy

There are three important special cases:

(¢h) w; =1 gives the MH statistic.
2) W, =ng gives the Gehan statistic,
(3 w, = /ni is suggested by Tarone and Ware.

76



Notes:

(i) Which test should we use? The Gehan statistic puts more weight
on the beginning observations, while the MH statistic puts equal
weight on each observation. Tarone and Ware's suggestion is inter-
mediate between the two, and they claim that the weights v, = /E;
have high efficiency over a range of alternatives.

(ii) Although (12) is identical to the Gehan statistic U ,
Vngw(U) ,» given by (13), is not the same as Varg’P(U) . Asymp-

totically, VarTw(U) is equivalent to the variance of U under

% %
H, while Var (U) is the variance under H. .
0 0,P 0

Example:

Referring to Table 4 (on p. 74) where we calculate the MH statistic

for Brown's clinical trial,

k
) my(ay —E))) = (10)(.50) + (9)(.56) + (8)(.62)

i=1
+ (6)(-.17) + 5(.80)
= 17.98 ,
which is what we got for Gehan's statistic U except for sign and roundoff.
Also,
Var, (@) = | o2 mip oy~ mip)7 1P L _,nil]
3w - i n, - 1 n, n.
i i i

*

(10%) (.25) + (92)(.2469) + (82)(.2344) + (62)(.1389) + (5%)(.16) ,

= 69 ,

VarO’P(U) = 79.44

which

give
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N *
Var,...(U) = 8,31 and /Va

W rO,P(U) = 8.91 .

Reference:

Tarone and Ware, Biometrika (1977).

D. Efron test
Recall that in the construction of Gehan's test, we defined the score

function

1 if we know t., > u.',
1 J

U, . 0 otherwise,
1]

-1 if we know t. < u, .
1 3

Suppose we have the situation

F—n——6 K>t

ys X

€.=0 §.=1
3 i
The Gehan test assigns a score Uij = 0 for this pair regardless of how

much larger X, is compared to yj . Efron suggests using the score

Uij = P{Ti>Uj|(Xi,Gi), (yj,ej)} .

For the picture above,

3
L]

. = P{U.<x.|U.>y.}
15 = P10y il LIRA N

~ s
1- Fz(yj)

where F2 is the Kaplan-Meier PL estimator for Population 2.

Use of these scores along with 1 and O instead of 1 and -1 leads to '

the statistic
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| Jo [1-%1(u)]d§2(u) - ﬁ{Ti:>Uj} . (14)

The estimator P{Ti>Uj} is the GMLE of P{Ti>Uj} , which is the parameter

N the Wilcoxon statistic is estimating in the uncensored case, i.e.,
1 a.s.
— U - P{XY}
mn

in the uncensored case with Uij =0, 1/2, or 1.
The estimator (14) is somewhat unstable in the tails, which has pre-
vented its widespread use.
- Reference:

Efron, Proc. Fifth Berkeley Symp. IV (1967).

V. Nonparametric Methods: K Samples

For the ith sample (i = 1,...,K) , let T4, cees T,, be iid each
i

with d.f. Fi , and Cil’ cevos Cini be iid each with d.f. Gi . Cij is

the censoring time associated with Tij’ We can observe

Ryps83p)s woos Ky

,8._ ) where
lni

X,, =T,.AC,. , 6..=1I(T,.<C,.) .
ij ij 1] 1]

We are interested in the hypothesis

A, Generalized Gehan test (Breslow)

Using the score function that we defined on p. 65, let

n,

1
l j'§:=l U((Xij’aij), (Xi|j',
i

K
z:

n,

1
W, = Siviat)
L ) s

i

« 1

W= (Wl,...,WK) .
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Breslow obtains the asymptotic covariance matrix of W under the

more restrictive hypothesis

* €
HO: F1 = = FK; Gl = L., = GK .
Denote
Iz< A
N = n,
i=1 *

A%mhgnﬂN+% as N=+», i=1,,.,,K,

a * 3 %
W~ NQug, N7 Z)
where
* 0
Hog = %> }
0 . =X, A, N
% 2 1]
ZO = (J [1~H(u)]"dH (u)) . s
~ 0 u _}\.)\.
1] .
L XK(l—XKl
and
H (t) = P{xilgp} R .
Hy (£) = P{X,,<t, 6., =1},
H(t) = }\1 Hl(t) + ... + AK HK(t) .
Hu(t) = >‘1 Hlu(t) + ... + AK HKu_(t)

Since the asymptotic covariance matrix depends on unknown parameters,

substitute
MW N
N K ™M
1
He) =5 ) ) L(X;4<t)
i=1 j:l . P
K ™M
ﬁu(t) =-% Lol I .<t, §.=1)
i=1 j=1 . J
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Reference:

Breslow, Biometrika (1970).

Types of Tests:

(i) Omnibus;;x? test

Use

1

NN

a _2
2 XK—l .

IlMﬁ

> =

loe]
N f a-iy2an =1 A
0 u
‘ 1 - k
This statistic is equivalent to W (Z.,) W where (ZO) is the

%
generalized inverse of ZO .
With no censoring, this statistic is asymptotically equivalent to

the Kruskal-Wallis statistic. Recall that if Rij is the rank of Xi

among all N observations, and

n,
f.
R, = R,. ,
i j=1 ij
R, = = g, ,
i n, 1
i
K
= 1
R. =% ) R, ,
N 121 i
then the Kruskal-Wallis statistic is
2
K K R
12 - = 2 _ 12 =
N(N+L) .Z n; Ry -RI” = \FowD) .z n, @+
i=1 i=1 7i

which has asymptotic distribution Xé—l under HO .

(ii) Test for trend

Suppose we know that if the populations are not all equal, then
they are ordered. For example, the populations may correspond to in-

creasing doses of a drug
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where di is the dose given to members in Population i. In other
situations it may be known a priori that the populations should change
monotonically if they differ, but there is no numerical covariate.
When a quantitative measure like dose is available, define
v

% = (dl’ cous dK) .

If a quantitative variable is not available, then define

v
L= (&1, ..., =3, -1, +1, +3, ..., +(XK-1)) if K is even,
— — 1
p= D a0, 4, L, + LT 5 ks odd
Abelson and Tukey suggest the linear-2 or the linear-2-4 contrasts -

which we illustrate respectively for K even:

(-2(k-1), -(X-3), -(K-5), ..., +(K-5), +(K-3), +2(K—1))' >

2

%= (~4(&-1), -2(K-3), -(K=5), ..., +(K=5), +2(K=3), +4(K-1))

Renormalize W by defining

-— Wi
W, = ————, Y
i ni(N ni)

=i
|

~

=1

and let c¢ be such that

~

Then,

v

c W
T %
A2 5t e

and this statistic can be used to test

2 w(o,1) ,

0 Fl = .. = FK against le Fl < ... <F
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When a quantitative measure is available, there are other regression
techniques which can be used. These are discussed in Section VI,
Reference:

Abelson and Tukey, Ann. Math. Stat. (1963).

Permutational covariance matrix:

Define
. K Dyt
W,, = ) ) U(E,,,8..), X S.va1))
ij i'=l j'=l ij’ 1J ’ i'jl’ i'j' ?
1,3+, 9)
and rename
W* W* W* W*
S AR ] ’ es 0oy > AL ]
11 1n1 K1 KnK
to
% *
Wl’ cees WN .

To calculate the permutation distribution of E » Suppose we are given
Wi, ey W§ .  Under H: we sample these W: without replacement, letting
Wl be the sum of the first n, sampled, W2 be the sum of the next n,
sampled, and so on.

, ,
The covariance matrix of W = (Wl, sess W,) under this sampling

~ K
scheme is
— b
K%y n, (N-n;)
I | .
Z* 1f{i=1 j= J : 1nj
~0,P N N-1 : *
-n n. .
i7]
_ nK(N—nK).J

% ‘ A%k
The matrix ZO p can be used in place of N3 ZG , although the two are
<0, <

asymptotically equivalent.
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Reference:

Marcuson and Nordbrock, Biometrical Journal (1980 or 1981)

Distribution under HO:

Under the hypothesis of interest v ®

Breslow shows

where the elements of I are

~0
o _ A e -
0gy = xixjfo (I-H) (-H)AH,  1f 143,
0 0 2 s
oy4 = Ai JO [(1-1H) (1—Hi) - Ai(l—Hi) ]dHu .

To estimate this covariance matrix, it is easier to use the Mantel-Haenszel
statistic (given next) than to substitute estimates for H, Hi’ H .
Reference:

Breslow, Biometrika (1970).

B. Generalized Mantel-Haenszel test (Tarone and Ware)

Let the ordered combined sample be denoted by

(z

(z(l)’C(l))S L ] (N),C(N)) -]

and let
Ry 7RG

For each uncensored time point, construct a 2 X K table; i.e., if

(Zu(i)’l) is the ith uncensored observation, form
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Population

1 2 . K
Dead ail=0 aiZ=1 o aiK=0 m
Alive cee m,
N1 Py “e nk o NGy

Notice that for K=2 , the tables are the transpose of the previous 2 X 2
tables on page 72.

Under Ho: F1 = ... = FK ’

Eg(Ag) = (Bo(a;p), .05 Bg(a, )

I e S i 1 1Mk
- N ’ ..., N 9
i i
f.
"1 Mg B
Ny Ny n
- oM™y
5 (A.) = il i2 o . Ni Ni .
~O LT Nyl _ ik Pig
Nl N1 nig nix
N, N,
. 1 1

Define

a-E (4) § w, (a; - Eg(A)))

2
zy = ; vi 2oy s

where the w, are weights. There are three special cases:
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i

(L v, 1 . This gives the generalized Mantel-Haenszel test.

2) w

i Ni . This gives the generalized Gehan test.

In Section A, we obtained the asymptotic covariance matrix of the

%
generalized Gehan statistic under the more restrictive hypothesis HO . =
The asymptotic covariance matrix under H0 is ZO , and the formula

given here is computationally easier than Breslow's approach.

(3) w, = Vﬁi . Tarome and Ware c¢laim this gives high efficiency over

a range of alternatives.

Reference:

Tarone and Ware, Biometrika (1977).

Types of Tests: »

(i) Ommnibus XZ test

Since §0 is singular, delete one population, say the first.

Define a_q - Eo(é; ) and EO,—l to be 3-—E0(é) and §O respec-—

tively with the first population deleted. Then

_ v -1 a 2
W=(a; - Ey@A ;) I 5y - B ) ~ Xz

~ ~

under HO . The value of W will be the same no matter which popu-
lation is deleted.
For the generalized Mantel-Haenszel test (wiifl) , we have the

approximate test

2
Z@_—E_)2= K G- EB)™
E =1 By Tl

where
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8 = Z 2k °
1

M0y
y L .9
i

N, '
i

Eg(ap) = % Eg(Agy) =

Although this test is somewhat conservative since Z(O—E)Z/E:iw , it
is simpler to use because no matrix inversion is involved.
References:

Peto and Pike, Biometrics (1973).

Peto et al., British J. Cancer (1976, 1977).

(ii) Test for trend

Suppose

'Fl < .ee < FK .

For the choices of &% in Section A, use the statistic
'@ - Eya) ,

which asymptotically has a normal distribution.

Reference:

Tarone, Biometrika'(l975).

VI. Nonparametric Methods: Regression

A. Cox proportional hazards model

Let T T; C

1> cers T 12 cres Cn be independent r.v.'s. Ci is the

censoring time associated with the survival time Ti . We observe

(Yl’al)’ caes (Yn,ﬁn) where
Yi=Ti/\Ci, (Si=I(Ti<Ci) .

Also available are s eees X where
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?

x,0= (Ry95 oo xip)

is the vector of independent variables or covariates associated with the
dependent variable Ti .
Recall that the hazard function is

£(t;x)

)\(t;.}f) = l—F(t;X) ?

where we have included the dependence of the distribution of T wupon the

covariates in x . The proportional hazards model assumes

Rix
Mesx) = e T A (),
'

where § = (Sl”‘°’6p) is the vector of regression coefficients. The
hazard rate is the product of a scalar and the function Xo(t) , where the
scalar depends on the regression coefficients and the covariates. The
theory could work if eg 2 were replaced by any sensible h(g'g) where
h is positivef Both the regreséion coefficients § and the underlying
hazard function Xo(t) are unknowrn.

We say that a family of distribution functions is a family of Lehmann

alternatives if there exists a d.f. FO such that for any ¥ in the

family
-F = (1-F.) Y
1-F (1 FO)
for some real Y , or in terms of survival functions
= gf
S S0 .

The proportional hazards model implies that the d.f.'s form a family of

Lehmann alternatives:
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S(t;x)

t
exp{}[ A(u;x)d%} .
0 <
B'x (t
= exp{j—e~ - f Ko(u)d;} ,
0

B'x

~ o~

t e
= exp{gjo Ao(u)dé} .

B'x

e
= So(t) s

where

t
So(t) = exp{}[o Xo(u)d%} .

Consider the special case in which p =1 .

1 if the ith observation is from Population 1 ,

0 if the ith observation is from Population 2 .

Then

Bx,

[éB=Y if i is from Population 1 ,
e =

L 1 if i is from Population 2 ,

and consequently the survival functions for Population 1 and Population 2

are related by
= af
Sl(t) = Sz(t) .

Conditional Likelihood Analysis:

Cox writes:
"Suppose then that Ao(t) is arbitrary. No information can be
contributed about B by time intervals in which no failures occur

because the component Ao(t) might conceivably be identically zero
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in such intervals. We therefore argue conditionally on the set of
instants at which failures occur; in discreﬁe time we shallvcondition
also on the observed multiplicities. Once we require a method of
analysis holding for all Ko(t) , consideration of this conditional
distribution seems inevitable'.

Assume there are no ties; ties will be treated later. Order the ob-

served times
< < <
Y@ Y@ T Ty
and let G(i) be the censoring indicator and X(i) be the covariate

associated with Y1) Also denote R(i) = R(y(i)n) . For each uncen-

sored time y(i) s

R'x,
P{a death in [y(i),y(.i)+Ay)m,(i)} = ) e~ "~ Ao(y(i))Ay ,
o . . e§'§(i) i
P{death of (i) at time y(i)|one death in R(i) at time y(i)} = e§'§j .

Taking the product of these conditional probabilities gives a (so-called)

conditional likelihood:

e@'f(i)
Lc(g) =1 B'x, °
u Z e'v ~7]

Cox suggests that we treat his conditional likelihood as an ordinary

likelihood. 1In particular, to find the maximum likelihood estimate, use

the score vector and the sample information matrix:
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1

9 -
ag 1°ch(§) - (881 logL (B) L ] aB lOgL (B)) b
[ 3 5% N
logL (B) ... 5= logL (R)
361861 c'~ BBlBBP (R
2 * -
1(8) = - 5 logL () = - : : :
ol 33
82 82
logL (B) ... logL (B)
¥§5Pasl ¢~ SBPBBP c ~ ]
We want to solve the equations
2 logL (8) =
3§ c '~ ~
which usually requires iterative methods. Therefore, if éO is an initial
guess, let
~1 20 ~1,70, 9 -0
§ = ? + i (§ ) 8@ 1och(§ ) .
If é is the solution, Cox asserts
B 2N, 1) .

Taking derivatives of

ot - e 1
u

)

IR (1)

'x.
e~ ~J ,

we obtain formulas for the score vector and information matrix:

)

I&R (4
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2

; - -9
L ® = - 5508, T8
'x, 'x, B'x,
Y X %0 e~ I ) Xk e~ ™J ) m e” ™ <
_ z JE&(i) _ JER(i) JG&(i)
RB'x, 'x, B'x,
u z e~ ~J Z e~ ~J E o~ ~J
For testing HO: B =0, Cox uses the Rao-type statistic
d 'o-1 o
(38 1Och(9)) 3: (9)(38 1Och(9)) 9 .
which is asymptotically X§ under HO . The score vector and information
matrix have simpler forms at B =0 :
3 _ -
3Bk loch(g)— Z{X(i)k X(i)k} s -
1,00 = 2= § k. ox, - X X :
k&< n, . ik “iL (Dk “@f
) ul i JER(i)
1 - -
= a1 (e 2y g0 " Xy
where
I
5(1) = ———;;T——‘f > ny = # in R(i)
The sample information matrix is simply a sum of the covariate covariance ¢

matrices for the risk sets of the uncensored observations.
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Consider the special case p =1 and

1 if i is in sample 1 ,

X, =
i
0 if i is in sample 2 .
B Then using the notation for the Mantel-Haenszel test,
B - = 3. i1
5 108Le (0 = Mx(yy = xqy) = E(ai n ) ’

R R A ST
ul 1 JGR(i) u
Therefore, in the case of no ties, Cox's test is exactly equal to the
Mantel-Haenszel test.
N References:
Cox, JRSS B (1972).
Prentice and Kalbfleisch, Biometrics (1979), has a nice survey of
the Cox procedure.

Kalbfleisch and Prentice, The Statistical Analysis of Failure

Time Data (1980), is an excellent new text on the Cox

approach to survival analysis.

Justification of the conditional likelihood:

a) Margingl likelihood for ranks

Make the crucial assumption of no ties.
Suppose the data are uncensored. Let Yl’ cens Yn be indepen-

dent and Yi have d.f. Fi with density fi . Denote

- ‘ Y = (Yl, cees Yn) R
B'—" (Rl, s w0y Rn) s

?
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where
R, = rank of Y, ,
i i

Then the probability for the rank vector r is

n
p(E) = J 500 J 'g f(i) (ui) dul...dun .
i=1
u.<,,..<u
1 n

where f(i) is the density corresponding to y(i) . For example, if

n=3 and r = (3,1,2) ,

p(E) P{Rl=3, R,=1, R3=2} ,

J J J fz(ul) f3(u2) fl(u3) dulduzdu3 .
u1<u2<u3

Kalbfleisch and Prentice show that when

B'xi t
F,(t) =1 - exp{=e™ ~ JO Ao(u)du ,
then
)
n o~ E(i)

p(r) = T e

i=1 z = ~3
jGR(i)

Now allow censoring. Use the usual notation (Yl,Gl), coes (Yn,Gn),

and let Yi have d.f. Fi and density fi . Define the rank vector

u/e u/c u/c
AL L L
where
rank of Yi among uncensored observations if 6i=l s
u/c _
Ri =
rank of the preceding uncensored observation if 61=0 .
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and the indicator vector #

§ = (61, eees 6 )

n

Then the probability of (Eu/c’§) is

n

u
u/c _ _
u1<...<un i,i+l
u

where fu(i) is the density corresponding to the ith ordered uncensored
observation, Ci,i+1 is the set of indices corresponding to the censored
observations between the ith and (i+l)-th ordered uncensored observations,
and n is the total number of uncensored observations.

For example, for r = (2,1,1) and § = (1,1,0) corresponding to the

picture

the rank probability is

p((2,1,1),(1,1,0)) = f J £, (u)) [1-F4(u)) 1£, (u,) dujdu, .

ul<u2

Kalbfleisch and Prentice show that if

B'xi t
Fi(t) =1 - exp(-e” ~ jo Ao(u)du R
then
1
x
<~ ~({1)
p(ru/c,a) =1 _ A% L,
u ) o~ ~3

95



Reference:

vE

Kalbfleisch and Prentice, Biometrika (1973).

b) Partial likelihood

Consider the sequence of pairs of random quantities

(xl,sl; X558y 3eee3 Xm,Sm)

In regression with censored data let Ya(1) denote the ith ordered uncen-

sored observation. Think of Xi as containing all the censoring informa-

tion in [yu(i—l)’yu(i)) together with the information that a failure

occurs at time yu(i) , and think of Si as containing the information

that the particular individual with covariate §u<i) failed at time yu(i) . -

The marginal likelihood of S,, ..., S is
1 m

m
P(Sl:--O’Smlé) = 1II P(Silsls---ssi_l;g) 9
i=1

and the conditional likelihood of Sl’ cens Sm given Xl’ caes Xm is

. m
p(sl,...,smlxl,...,xm;g) = p(silsl,...,si_l;xl,...,Xm;g)
i=1 .

L 2N

The full likelihood is

P(XpseeesX 587500055 [B)

~

m
h p(xi,silxl,...,xi_l;sl,.,.,si_l;@)
i=1
m

m
iElp(xilxl,...,xi_l;sl,...,si_l;g) iElp(silxl,...,Xi_l,xi;sl,...,s. )

Cox calls the second product, i.e.,
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m
igl p(SiIXi‘,.. Xy 15%;387500058, 3B

the partial likelihood.

In regression with censored data the partial likelihood coincides with
L., which we have called a conditional likelihood. A comparison of the
definitibnsiof‘partial likelihoqdvand conditional likelihood shows that the
partiéiiiikéiihbod is not a tfue»conditional,likelihood, nor is it a mar-
ginal likelihood. Although feghnically incorrect, we will continue to call
L, the conditional likelihood.

;Céﬁiélaims thét the parﬁiai 1ikelihood contains most of the informa-
tioniaﬁbﬁt'7§  for régféssion‘with censored data, and that we can ignore

the first prodﬁct, i.é.,
m
I op@|Xpsees®y 1585,00058, 138)
i=1 ‘
without losing much. Efron and Oakes have compared the Fisher information
in the partial likelihood to the Fisher information in the full likelihood
for a variety of models. Usually the information in Lc is very high with
efficiency > 90%, and in rare cases, Lc even carries as much information
as the full likelihood.
References:
>Cox, Biometrika (1975).
Efron, JASA (1977).

Oakes, Biometrika (1977).

Justification of asymptotic normality:

In his 1972 paper Cox asserts that B , the solution to

3 -
5-1och(§) =0,
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is asymptotically normally distributed. In his 1975 paper Cox gives a
heuristic argument which is similar to the standard maximum likelihood ar-
gument.

Tsiatis gives a proof of the asymptotic normality of 4% using integral
representations and stochastic processes which is similar to the proof given
by Breslow and Crowley of the asymptotic normality of the PL estimator and the
proof given by Crowley for the Mantel-Haenszel statistic.

Bailey gives an argument using Hajek projectionms.

References:

Cog, Biometrika (1975).

Tsiatis, Ann. Stat. (1981).

Bailey, Univ. of Chicago thesis (1979).

Estimation of S(t;x):

Under the Cox proportional hazards model,

B'x (t
S(t;g) = exp(-e J Ao(u)du .

0
B'X [ 3
= exp{5e~ ¥ Ao({} s
B'x
=S5,
where
So(t) = e .
To estimate S(t;§) , we substitute é for B , but how do we estimate

Ao(t) or So(t)?

Breslow assumes Ao(t) is constant between uncensored observations:
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A l .
%o,8(8) = FE T Tea-n T T
(yu(i)-yu(i—l)) ) e
However, he estimates So(t) by
A 6 I
Spp®) = @ 1o —@ )
> VY, St B'x,
(1)— ) o~ ~3

. N _ (e 3 a . . .
Notice that AO,B(t) = fO AO’B(u)du and SO,B(t) are inconsistent in

the sense that

n —Ko(t)
SO,B(t) # e

A

even for t = Y1) ¢ Moreover, S, B(t) can take negative values.
>

Tsiatis uses

A, o (t)
S, (&) =e 2T
0,T
where
N P
o= ) — &
0,T g <t 8'x
(i)— ] e ~3
but SO T does not simplify to the PL estimator when é = 0 . Notice
s ~ ~ .

that Ko(t) is a step function.

N

Link uses a linear smooth of AO T(t) , which is the integral of.the
b4

Breslow estimate of Xo(t) , and, like Tsiatis, defines

A

A, ()
A 0,L
SO,L(t) = e .
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o,L -
f’,,,r___
V4 ~
‘ A ()
i 0,T
e
-
h'4 FaY htd Fa Y o V.7 4 t
rzy LV PiY pey AV A ¢ 2 P

Both Tsiatis and Link calculate Var(SO(t)) , Isiatis using a like~
lihood model and Link using the delta method. Link also uses Monte Carlo

methods to study the confidence intervals associated with

. . . 8y .(®)
1 = — e
SO,L(t)’ log SO,L(t)’ 'and logit SO,L(t) log .

~

1_SO,L(t)

~

and finds that the coverage probabilities with S0 L(t) tend to be
2

too low, those with logit S (t) too high, and those with log S

0,L 0,1t

approximately correct. These results concerning the confidence interval

coverages hold also for the PL estimator.

Alternative estimators of S(t;x) , which are computationally more com-—

plicated, have been proposed by Cox, Efron, and Kalbfleisch-Prentice (loc. cit.).

References:
Breslow, JRSS B (1972), in Discuésion on Cox's paper.
, Biometrics (1974).
Tsiatis, Univ. Wisconsin Tech. Reﬁort No. 524 (1978).
, Ann. Stat. (1981).

Link, Stanford Univ. Tech. Report No. 45 (1979).

Discrete or grouped data:

Denote the ordered distinct survival times by

Yy < Vi) o

and let
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= i ! =
R(i) risk set at time Y~ o

= T
ﬂ(i) death set at time y(i) , 1.e., the set
of individuals who die at time yki) .

di = #(N(i)) .
Cox suggests using

r
L, = n P{ag(i)lﬁ(i),di} ,

with

w0l 1 g
3€8, ;s

P{as(i) |R(i),di} =

) exp( )

* K
81y 3&8 (1)

%
where the summation in the denominator is over all subsets ﬁ(i) cC R(i)
%
such that #(ﬁ(i)) = di . For i=1, ..., r , there are

oy
( ) subsets to comsider so for even modest-sized data sets, this approach
d

is not computationally feasible.

An alternative likelihood, proposed by Peto, Breslow, and Kalbfleisch-~

Prentice, is

LBy

LTI
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which seems to work reasonably well when the number of ties is not
excessive,

Neither of these likelihoods strictly adheres to a Lehmann alternafive
model or a proportional hazards model, but the next proposal by Prentice
and Gloeckler does.

Prentice and Gloeckler assume that the time axis is partitioned by

O=a, <a, < ... < a < g =™
0 1 r-1 r ’

and

Aj = [aj_l,aj) .

If a survival time falls in the interval A.j , then record time j . Denote

0. = exp —J Ao(t)dt .

which is the conditional probability of an individual with covariate =x=0
surviving Aj , given that he has survived Aj—l.' Then the probability

of the ith observation surviving to the beginning of A.j is

1
j-1 e§ %4
Hak s
=1
and
1 ]
j-1 eg % e§ ~1 61
P{Yi=J,Gi} = El Oy 1- oy .

The full likelihood is

n
L= 1 °p{Y,=3,81 ,
i=1 i i
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which is a function of the unknown parameters B, 0., ..., o .
: ~ 1 T
To estimate these parameters use maximum likelihood. Notice that the

aj's are restricted by
0<oy<1, j=1,...,r, and Y oa, =1,

Eliminate ar and let

Yj = log(-log aj), j=1,...,r-1 |

so that

< yy 4w, §=1,..,r-1.

Maximizing with respect to Yl’ cees Yr—l is simpler than maximizing with
respect to al, cees ar because there is no need to worry about the

boundaries. Also, Newton-Raphson convergence is faster.

References:
Cox, JRSS B (1972).
Peto, JRSS B (1972), and
Kalbfleisch and Prentice, JRSS B (1972), in Discussion on
Cox's paper.
Breslow, Biometrics (1974).

Prentice and Gloeckler, Biometrics (1978).

Time dependent covariates:

We generalize to the situation in which the covariate is allowed to

vary with time. Therefore, together with

- Y, =T, AC 8, = I(T;<C.) ,

i’

we observe Xi(t) . The proportional hazards model assumes the hazard
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function of the ith observation to be
B'x, (t)

so that

Era Gy

’

P{death of (i) at time y,, Ione death in R,., at time y,.\} = 0
(1) 1) (1) ; e@ x5 1))
IeR (1)
and the conditional likelihood becomes

BRSO LcOY

ey FHOw) -

IR 1)

In the time varying case, no proof exists for the asymptotic normality

of B . Also, for moderate to large data sets the computations become

unfeasible. P

Example 1. Stanford Heart Transplant Data

Do heart transplant patients survive longer than heart-disease patients
who do not receive heart transplants? Typically, a patient enters the study
and receives a transplant when a donor heart becomes available. Upon trans-—
plantation, we say that the patient has migrated from the no-transplant
population to the transplant population, and the covariate that indicates
transplant changes from 0 to 1. Other covariates measured include age,
waiting time to transplantation, calendar time from beginning of study, and
a mismatch score which measures the degrge of dissimilarity between donor
and recipient tissues.

Reference:

Crowley and Hu, JASA (1977).
Turnbull, Brown, and Hu,.£é§é (1974),
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Example 2. Adoption and Pregnancy

Are couples with an infertility problem who have adopted a child more
likely to conceive than couples who have not adopted? Here, couples may
migfate from the childless population to the adopted population. Censoring
occurs when a couple stops trying for a pregnancy.

Reference:

Lamb and Leurgans, Amer. J. Obstet. Gyn. (1979).

Leurgans, Stanford Univ. Tech. Report No. 57 (1980).

B. Linear models

The standard linear model is

1
Il

oc+Bxi + e; >

or T B'x, + e.

1 B'x, i i=1, ..., n,

13t Cn

be independent; Ci is the censoring time associated with Ti . We observe

where €15 ++e5 € are iid with common distribution F. Let C

Y, =T,AC, Si = I(Ti<Ci) .

Accelerated time models:

Linear models are connected to hazard models through accelerated time

models., Suppose Zo is a survival time with hazard rate

fO(Z)

Ao(2) = 1-F, (2) °

and assume that the survival time of an individual with covariate x has

the same distribution as
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Notice that if B'x < 0 , then ZX is shorter than Z0

the covariate accelerates the time to failure. The hazard rate of ZX is

and we say that

~

fx(Z)

Ay (2) @

-B'x -B'x

e Tz)e T 7
—B'x s

1-F0(e v Tz)

fo(

_S'X _le
= Xo(e z)e .
Define
TX = log ZX . ~
Then

E(TX)

~

§'§ + E(log ZO) .

B'x + a ,

~ o~

so the accelerated time model coincides with a log-~linear model:
T. =B'x+ 0+ e, where

e = log Z0 - E(log ZO) .

In applying linear model methods to survival data it is frequently
necessary to transform the data by a logarithmic transformation in order
to symmetrize it so the accelerated time model is very relevant in this
regard.

References:

Prentice and Kalbfleisch, Biometrics (1979), and

Kalbfleisch and Prentice, The Statistical Analysis of Failure *

Time Data (1980), both discuss the accelerated time model.
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1. Linear rank tests

With no censoring present, the locally most powerful rank statistic

for HO: B =0 against Hl: B+ 0 is

2

dB log P(r) 8-0

where p(r) is the probability of the rank vector r . Similarly, when

censoring is present, use the statistic

d
ag 1o P(ru/c’§)'
where from page 95,
n
u/c by
p(r ,§) = J...f i fu(i)(ui) Il [l—F.(ui)] dul..
~ i=1 j€c, J
u.<,...<u . i, i+l
1 n
u
fi(u) = f(u-Bxi)
It can be shown that
n,
log p(r 6)' X c, + ( z X.)C.
dB - u(i) i . 3710
B= -0 1% 1 JEC; 1 ,
where
nu : n o
= ) - =% 10g £(u,) ﬁl £ () [1-F(u,)] N au
i =1 u(d) EP e i i
U<,
u
n, n
- d hy u(J)
.= IIn - — 1og[l—F(u )1 H f(u )[l—F(u )]
i u(J) du
J =1 u.< <u i =1
1°° n,
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Letting the error distribution be the extreme value distribution

ot oot
1-F(t) = e , E(t) =e¢
(see pp. 24-25), then
i
c; = 5 L -1,
j=1 "u(j)
i
. Ci - - 1 ,
3=1 "u(j)

so the locally most powerful rank statistic in this case becomes
_Z{X . - ;{ . } 9
AR CORRTEY

which is the numerator of the Cox statistic for testing HO: B =0

(see p. 92). Peto and Peto named this the log rank test.

References:
Prentice, Biometrika (1978), gives a derivation of the linear
rank test statistic and calculates its variance.

Kalbfleisch and Prentice, The Statistical Analysis of Failure

Time Data (1980), Ch. 6.

Peto and Peto, JRSS A (19?2), introduce linear rank tests and
coin the term "log rank test".

Morton, Biometrika (1978), discusses permutation theory for
linear rank tests.

Latta, Biometrika (1977), establishes a connection between

linear rank tests and Efron's test.

2. Least squares estimators

We assume here for simplicity

E(Ti) = oc+8xi .
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The estimators can be generalized to handle more than one covariate.

a) Miller estimators

With no censoring present, the estimates & and é minimize
n 00
Z (Yi— a- Bxi)z =n J zz an(Z) s
i=1 -

where Fn is the empirical d.f. of Zys sees 2 and

z, = « — A= PX, .
1 yl o B1

With censoring present, the proposal is to minimize

® 2 - PN 2
0| P = ] 8-,
o 401 1 i i
where F is the PL estimator based on (21,61), :.., (zn,ﬁn) , and
the weights %1(6)’ eees Qh(s) are the jumps of the PL estimator.
Notice that if 61 = 0 corresponding to a censored observation,
%i(B) = 0 , so at first glance the weighted sum of squares does not
depend on the censored observations. However, the PL estimator, and
therefore each weight, does depend on the censored observations.

If G(n) = 0 so that the last ordered observation is censored,
change it to be uncensored. Then, Z? Qi(B) =1,

We have written the weights as functioné of B only. Since
adding a constant O to each Ti results only in a shift of the
PL estimator, the jumps of the PL estimator, and therefore the
weights, do not depend on o .

To calculate o, B, we differentiate with respect to o to

obtain

a= ) w By, -8 ] wB)x .
i= i=1
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Substituting this expression into the weighted sum of squares results

- Z W, 9 2 ] XK. 9

which can be minimized by a search procedure.

Since the function f£f(8) is not continuous, fhe search for the
minimum can be tedious, especially in higher dimensions. As an al-
ternative procedure Miller suggests the following modified approach.
Define the initial estimate

v, (x, ~x)
éo E iti u

z(XJ". - 5'-{u)2 ’
u

which is the slope of the least-squares line through the uncensored

20

observations. With this guess [  , form
z, =y, - Bx, , 1=1,...,n.

Let ﬁo be the PL estimator based on (22,61), cees (gg,an) , and
let Gl(éo), ceos Qn(éo) be the jumps of fo . Now define the

new estimate

) q(éo) v, (x4 - )

/\1 u
B = L % 0 % 9 5
1lei(&) (x; - x,)" | B
where
P N )
w, (B7) = ——%6-
llei(B )

o]
i
o~

>
[
~
™.
~’
»
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A*A
Using the renormalized weights wi(BO) allows us to ignore whether

N

the last ordered gg is censored or not. Only the uncensored ob-
servations appear in the summation. The usual procedure of rede-
fining the last ordered 22 to be uncensored if it is censored gives
less stable results in iteratively estimating B , but it should

still be used in eétimating o .

We iterate the above procedure and hope for convergence. However,
the sequence of estimates of f may become trapped in a loop where
they osciilate between two values, in which case we take the average
of the two values.

N\ Ak oA

Assuming that the variability due to the weights wi(B) is

negligible,

o ‘Zlazcé) (v, -a-Bx)?
Var(B) =

PN %2
é w, (B) (x;-%)

\

The derivation of this variance estimate, as well as the proof
of the consistency of the estimates o and R , depends on the

assumption that the censoring distribution of the ith observation is

Gxi(C) = Go(c—-BXi) s

If G

for some distribution function G 0

0 - has den51§y gy as
pictured below, then _GX has density By > which dis 8o trans-
i i

lated by Bxi :
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Reference:

Miller, Biometrika (1976).

b) Buckley-James estimator

Our model assumes
E(Ti) = a%—BXi .
Unfortunately, we cannot observe Ti s but only Yi » and
E(Yi) # uﬁ-Bxi.
Buckley and James define the pseudo random variables
Y =18, + |T,>Y,) (-8
1= Y30 + E(TIT Y A=6)
and calculate

rOO

w—Jw s dFi(s)

TR 4RO .
u 1

E(Y:) I, u(1-G, (u))dF, (u) + fo.

[e0]

o g
= Jo u(l—Gi(u))dFi(u) + JOLJO dGi(ui]dei(s) .

Lo 100]

f .
= Jo u(l—Gi(u))dFi(u) + Jo Gi(s)s dFi(s) .

pm
= I u dFi(u) ,

= E(Ti) 5
= 0L+f3xi .

* *
Therefore, if we could observe Yis sees Vg s it would be reasonable

to use
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o~

% -
e . vy (x4 = x)
o=y =-Bx and B = = . (15)
z (xi-§)2
i=1

* %
Since we cannot observe all of Yio cces ¥, 5 We substitute

estimates for those we cannot observe. If 61 = 0 , define

L w (B)z,

~ G
E(T,|T,>y.) = Bx, + = , (16)
it i i ~
1-7(z,)
i
where gi = yi—-Bxi , F is the PL estimator based on

(21,51), (zn,an) , and %l(e), Gncs) are the jumps of

F . Then define

o EA vy (B2
Zk Zi

l—-F(zi)

AR

vy = v+ Bxy 4+

(1-5) . . (a7)

Since equations (15) give B as a function of y: and equation (17)
gives yz as a function of é s we need to iterate. As with the
Miller estimate, the sequence of estimates of £ may eventually
oscillate between two values, and again we take the solution to be
the average.

Buckley and James claim that if the estimates of B8 oscillate,
then the difference between their two values is smaller than that
for the Miller estimate. Furthermore, the wvalidity of their method
does not depend on assumptions on the censoring distributions Gi .

Buckley and James give the variance estimate
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~2
o

Vgr(é) = u_ 5 where
Z(Xi-xu)
u
~2 1 N V)
Ou = nu—2 g(yi-'yu-'s(xi'-xu)) ’

but they do not give a mathematical justification.
Reference:

Buckley and James, Biometrika (1979).

Notes:
(1) The Buckley-James method is a nonparametric extension of a normal
theory technique due to Schmee and Hahn.

Define
- -
_ Ti Bxi
i o *

If F is. normal with variance 02 , then

>
E(T, |T>y,)

Vi~ %~ Bxi)
()— 9

E(o‘wi + o+ Bxg W, >

ag J w ¢(w)dw
(yi'o“’BXi) /0 .

-_-0L+Bxi+ y. —CX.—BX, .
1 - ®< i 1)
)
¥, - O = Bx
g ¢( i O i)
= o+Bx, + s
Yy - 00— Bxy
R

where ¢ and ¢ are the standard normal density and d.f. respectively.

Schmee and Hahn use the estimate

114



E(TiITi>yi) = okBx, +

in place of (16).
Reference:

Schmee and Hahn, Technometrics (1979).

(ii) Both the parametric and nonparametric methods are analogous to
the EM algorithm in maximum likelihood theory.
Reference:

Dempster, Laird, and Rubin, JRSS B (1977).

c) Koul~Susarla-Van Ryzin estimator

If we define

x ST

Y, = t—7—,
i 1 G(Yi)

then

% {o 0]
E(Yi) = [0 F(;E(E (1-G(w) dFi(u) s

Jo u dFi(u) .

B(T,)

it

a*exi °

* *
Therefore, if we could observe Vis coes ¥, » We could estimate

o and B by (15) in the usual way. Unfortunately, we cannot ob-

% *
serve all of Vs ++5 Y s but we can substitute estimates by
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replacing G with a PL estimator where the roles of the survival
and censoring random variables are reversed. Alternatively, Koul,
Susarla, and Van Ryzin propose to use a Bayesian estimator of G .

The big advantage with this method is that no iteration is re-
quired. Also, it is based on the assumption of a common censoring
distribution rather than shifted censoring distributions as for the
Miller estimator. However, the §: are somewhat peculiar in that
they are either zero or inflated values of the vy The behavior of
these estimators have not been evaluated at this point.

Referernce:

Koul, Susarla, and Van Ryzin, unpublished manuscript (1979).

Example. Stanford Heart Transplant Study

We compare the procedures of Cox, Miller, and Buckley-James when applied
to the Stanford heart transplant data displayed in Table 5. In the first
regression (Figure 5) the dependent variable 1is 1og10 survival time, where
the survival time is the time until death due to rejection, and the co-
variate is the mismatch score. In the second regression (Figure 6) the de-
pendent variable is loglo survival time, where the survival time here is the
time until death regardless of whether due to the rejection of the donor
heart or other cases, and the covariate is age. In the one case wﬁere the

survival time is recorded as zero this is changed to a one for taking logs.

The comparisons of the three procedures are presented in Tables 6 and 7.
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Table 5. Stanford heart tramnsplant data.

Patient Survival Dead=1 Reject=1 Mismatch Age
No. Time Alive=0 Nonrej.=0 T5 Score at Tx
3 15 1 0 1.11 54.3
4 3 1 0 1.66 40.4
7 624 1 1 1.32 51.0
10 46 1 1 0.61 42,5
11 127 1 0 0.36 48.0
13 64 1 1 1.89 54.6
14 1350 1 1 0.87 54.1
16 280 1 1 1.12 49.5
18 23 1 0 2.05 56.9
20 10 1 1 2.76 55.3
21 1024 1 1 1.13 43.4
22 39 1 1 1.38 42.8
23 730 1 1 0.96 58.4
24 136 1 1 1.62 52.0
25 1775 0 0 1.06 33.3
28 1 1 0 0.47 54.2
30 836 1 1 1.58 45.0
32 60 1 1 0.69 64.5
33 1536 0 0 0.91 49.0
34 1549 0 0 0.38 40.6
36 54 1 1 2.09 49.0
37 47 1 1 0.87 61.5
38 0 -1 0 0.87 41.5
39 51 1 50.5
40 1367 0 0 0.75 48.6
41 1264 0 0 0.98 45.5
45 44 1 0 0.0 36.2
46 994 1 1 0.81 48.6
47 51 1 1 1.38 47.2
49 1106 0 0 1.35 36.8
50 897 1 46.1
51 - 253 1 1 1.08 48.8
53 147 1 47.5
55 51 1 1 1.51 52.5
56 875 0 0 0.98 38.9
58 322 1 1 1.82 48.1
59 838 0 0 0.19 41.6
60 65 1 1 0.66 49.1
63 815 0 0 1.93 32.7
64 551 1 0 0.12 48.9
65 66 1 1 1.12 51.3
67 228 1 0 1.02 19.7
68 65 1 1 1.68 45,2
69 660 0 0 1.20 48.0
70 25 1 1 1.68 53.0
71 589 0 0 0.97 47.5
72 592 0 0 1.46 26.7
73 63 1 1 2,16 56.4
74 12 1 0 0.61 29.2
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Table 5. Stanford heart transplant data (continued).

Patient Survival Dead=1 Reject=1 Mismatch Age
No. Time Alive=0 Nonrej.=0 T5 Score at Tx
76 499 0 0 1.70 52.2
78 305 0 0 0.81 49.3
79 29 1 1 1.08 54.0
80 456 0 0 1.41 46.5
81 439 0 0 1.94 52.9
83 48 - 1 0 3.05 53.4
84 297 1 1 0.60 42.8
86 389 0 0 1.44 48.9
87 50 1 1 2.25 46.4
88 339 0 0 0.68 54.4
89 68 1 1 1.33 51.4
920 26 1 0 0.82 52.5
92 30 0 0 0.16 45.8
93 237 0 0 0.33 47.8
94 161 1 1 1.20 43,8
95 14 1 40.3
96 167 0 0 0.46 26.7
97 110 0 0 1.78 23.7
98 13 0 0 0.77 28.9
100 1 0 0 0.67 35.2
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& B SD(B)

Cox 1.076 .368
Miller 3.036 -.394

3.120 -.452 -236

Miller modified 3.145 -.471 .234

Buckley-James

Table 6. Regression of 1oglO survival fime

until rejection on mismatch score.

a B SD(B)
Cox .0575 .0233
Miller 2.537 -.0058

2,111 .0036 .0166
2.171 .0024 .0163

Buckley-James 3.582  -.0278 .0149

Miller modified

Table 7. Regression of 1og10 survival time on
age.

The three procedures give conflicting results for the regression on age.
The Cox method indicates there is a.highly significant age effect. The
Miller method says there is no effect due to age, and the Buckley-James
approach gives borderline significance to age. The Miller estimators may
be thrown off by the censoring pattern in this case.

Since there is also disagreement about the degree of significance for
the mismatch score effect, further work should be done to see which model
(accelerated time or proportional hazards) is more appropriate for these

data.
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VII. Goodness of Fit

A. Graphical methods

The human eye can distinguish well between a straight line and a curved

line so the following basic principle should guide the method of plotting.

Basic Principle: Select the scales of the coordinate axes so that

if the model holds, a plot of the data resembles a straight line,

and if the model fails, a plot resembles a curved line.

There are two types of plots one can make, namely, survival plots and
hazard plots. The two are closely related, and in each case the choice is
one of convenience.

(i) Survival plots

Plot either
S(yu(i)) against Yu@i)
or
S(t) against t .
This is a special case of Q-Q plots or probability plots.

Reference:

Wilk and Gnanadesikan, Biometrika (1968).

(ii) Hazard plots

Plot either
A(yu(i)) against yu(i) .
or
K(t) against t ,
using (see pp. 49-50) either the Nelson formula

7 e
M@ = ) o
Y=t
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or
Al(t) =

Reference:

Nelson, J. Quality T

-log S(t) .

ech. (1969).

, Technometric

s (1972).

1. One sample

a) Exponential

l-..
S(t)=e "*
log
- t
linear
b) Weibull
log

A(t)=At

linear

v
(nd

linear

ACE) = elog A+ a logt

log

c¢) Log normal

<999 +

probit

.001 -

WV
rt

s(t) =1 - @(1-9_3%)

\\4
(nd

log
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d) Gamma and others

Without the use of special graph paper, compute and plot
quantiles based on parametric assumptions against quantiles based
on the PL estimator.

Reference:

Wilk, Gnanadesikan, and Huyett, Technometrics (1962),

for the gamma distribution without censoring.

2. Two to K samples

For parametric models, repeat a) through d) on each sample.
Suppose we want to check the validity of the Cox proportional

hazards model. Under the model,
Yi
= 1]

for some .. so
YlJ s

log S, (t) = Vi log Sj(t) s OF )

log Si(t)
log 5, (0) = Yig o .

5, (t)
A
log Si(t)
log S.(t)
log linear ]

> Sj(t)

A’
ct

log linear

Compute individual PL estimates gl(t), ceos §K(t) » and form either

of the above graphs.
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Example, DNCB Study

Hodgkin's disease patients were sensitized and then continually exposed
to the chemical dinitrochlorobenzene (DNCB). The (+) population consists of
those who react positively to exposure to DNCB whiie the (-) population con-
sists of those who do not react; patients can migrate between populations.
Survival time was taken to be time to relapse.

Do the patients in the (+) population survive longer than those in the
(-) population? The Cox proportional hazards model was used. The plot of
log §(+)(t)/10g §(_)(t) in Figure 7 shows us that except for times t close
to zero, the ratio of the logs is reasonably constant, substantiating the
validity of the model.

Reference:

Gong, Stanford Univ. Tech. Report No. 57 (1980).

To check the linear model,. calculate the PL estimate for each of the

K samples separately, and plot them, checking for shifts by translation.

Sl(t) SK(t)

3. Regression

Suppose we want to check the proportional hazards model. In the
case X 1s one-~dimensional, we might partition the x—-axis into K
intervals, compute a separate PL estimator for each interval, and apply
K-sample procedures. If X is multidimensional, we might try to par-

tition the x-space into K regions. However, grouping the data requires
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that the number of observations be large and the required number of
observations grows rapidly with the dimensionality of x .

As an alternative to grouping, define
B'Xi Ti
Ax.(Ti) = e Jo Xo(u)du .

~1

Then, under the proportional hazards model,

!

P{Ax_(Ti)>t} P{Ti>A;%(t)} R

Zi ~i
= expl-A_ (AZ1(e))}
X, 5 X, ’
~i <1
-t
= e ’
showing that Ax (Ti) is a unit exponential random variable.
~i
Therefore, (Axl(Yl),Gl), ieos (Axn(Yn),Sn) is a sample from a unit
exponential distribution with censoring. Because Ax (Yi) depends on

~i
unknown parameters £ and Xo(t) , substitute estimates; define

~

n R B'x, 71 .
Ai = Axi(Yi) = e jo Xo(u)du .

Let S be the PL estimator based on (Al,dl), “ees (An,Gn) .
Under the proportional hazards model, log S(t) should be approxi-

mately a linear function of ¢t .

log S(t)

v
ot

linear
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If the plot of log §(t) against t 1is not linear, it may be diffi-
cult to guess what alternative model might be‘appropriate.

Under the proportional hazards model, (Kl,ﬁl), cens (Kn,én) are
censored observations of approximately iid random variables, so plotting
Ki(t) against a particular covariate xij or against §'§i should not

reveal any systematic patterns. The estimates A,, ..., A are called
1 n

generalized residuals in the sense of Cox and Snell.

linear

References:
Cox and Snell, JRSS B (1968), discuss generalized residuals.
Crowley and Hu, JASA (1977), plot generalized residuals for
the Stanford heart transplant data.

Kay, Appl. Stat. (JRSS C) (1977), discusses plotting genera-

lized residuals.

To check the linear model, if the number of observations is large,

partition the x-region into K subregioms, and apply K-sample pro-

- 8'x

. against a
i <~ i &

cedures. Alternatively, plot the residuals r; =y

"~
particular covariate Xij or against BR'x, .
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For both the proportional hazards and linear models the sensitivity
of the residual plot to detecting the correct model effect of a parti-
cular covariate X; . may be enhanced by computing the residuals with-

out that covariate in the model.

B. Tests

1. One sample

We want to test

H,.:F=F, , F0 specified.

(i) Generalized Kolmogorov (-Smirnov) test

Accept HO whenever

/HIF(t)-FO(t)l f_an(t) for all t >0,

where F(t) 1is the PL estimator and an(t) can be computed from

tables. This test can be used to construct simultaneous confidence

bands for Fo(t) :

. C (1) . c_(t)
PAF(e) = —2— < F(t) < F(e) +
/n /n

s VE>02 = 1-q
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References:
Gillespie and Fisher, Ann. Stat. (1979), and
Hall and Wellner, Biometrika (1980), consider the PL
estimator and random censoring.

Barr and Davidson, Technometrics (1973), and

Koziol and Byar, Technometrics (1975), and

Dufour and Maag, Technometrics (1978), consider Type I

and Type 1I censoring.

(ii) Generalized Cramér-von Mises test

After performing a probability integral transformation so that
Fo(t) = t , the uniform d.f., the generalized Cramér-von Mises test
uses the statistic

N 2
nJ (F(t)-t)“de ,
0

where F is the PL estimator.
Réferences:
Koziol and Green, Biometrika (1976), consider the PL
estimator and random censoring.
Pettit and Stephens, Biometrika (1976), consider Type I
and Type II censoring. Pettit specializes to the
normal and exponential distributions in

Pettit, Biometrika (1976), and

» Biometrika (1977), respectively.

(iii) - Mantel-Haenszel type test

Reference:

Hyde, Biometrika (1977).
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(iv) Limit of Efron's test

Reference:

Hollander and Proschan, Biometrics (1979).

(v) Parametric families

Suppose we want to test
HO: F=Fe, 6eco.
The usual approach computes an estimate 0 and checks if F is

sufficiently close to F@ .
Reference:
Mihalko and Moore, Ann. Stat. (1980), consider xz—tests
for Type II censoring with estimates which are asymp-

totically equivalent to linear combinations of order

statistics.

If @0<: O, and we want to test
HO : 6 € @0 s
then a likelihood ratio test is appropriate.
Reference:
Turnbull and Weiss, Biometrics (1978), consider likelihood

ratio tests for discrete or grouped data.

2. Regression

(i) Parametric families

Imbed the model in a larger model (e.g., a model which includes
quadratic or cubic effects or interactions) and test to see if the

smaller model holds. In effect, we are testing H0 :9 € Oo c 0.
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(ii) Xz-tests
References:

Schoenfield, Biometrika (1980), considers proportional
hazards models with regions in the time X covariate
space,

Lamborn, Stanford Univ. Tech. Report No. 21 (1969), looks

2 R .
at X ~tests for exponential regressionm.

VIII. Miscellaneous Topics

A. Bivariate Kaplan-Meier estimator

Let Ei = (Til’TiZ) be a pair of failure times. For example, they might
be the times to failure of the left and right kidneys, or the times of cancer
detection in the left and right breasts. Either or both times to failure may
not be observable due to a one-dimensional random censoring variable Ci .

The observable quantities are

¥y = (y5¥55) = (T;94C;,T )AC)

and the indicator vector
§ = (8315859) = (T(T34<Cy), T(T4,<Cy)) .
Munoz has shown how to compute the two-dimensional generalization of
the Kaplan—Meief estimator through the self-consistency and redistribute-to-
the-right algorithms. In addition, he has established that this estimator is
the generalized maximum likelihood estimator and that it is a consistent es-—

timator of the bivariate d.f. F(t = P{T  <t, T, o<ty o

12t2) 1158101

Campbell considers the model with bivariate censoring times and treats

the grouped data situation. Also, Korwar treats bivariate grouped data with

both left and right censoring.
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References:

Munoz, Stanford Univ. Tech. Report No. 60 (1980), defines the two-
dimensional KM estimator through algorithms and proves it is
the GMLE.

5 Stanford Univ. Tech. Report No. 61 (1980), proves consistency
of the two-dimensional estimator.

Campbell, Purdue Univ. Mimeoseries #79-25 (1979), and

Korwar, unpublished manuscript (1980), treat bivariate grouped data

with censoring.

v B. Competing risks

Let fi = (Til’ ceas Tip) be a p~dimensional vector of failure times.
Each coordinate is the time to failure from a specific cause like, for
example, heart failure, cancer, kidney failure, etc. The subject is obser-
vable only up to the time of the first failure. The failure times for all
the other causes are censored by the failure of the system at the first failure

time. The observable quantities are

T, = mln{Til, cees Tip}

and

= (B35 vees 850 = (T(Tg<Ty), ewy T(T <T)) .

§i p—1i

The indicator vector § denotes the specific cause of the failure.

The probability
P{Tijft’61j=1}

is called the crude probability of dying from the cause j by time ¢t.

It is directly estimated by the observed proportion .
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1
n

nes-—s

I(T,<t, §,.=1) .
i=1 * HJ

The net probability is

P{Tijit} ,

and if the causes are independent, this can be consistently estimated by the
PL method where all failure times other than from cause j are considered

to be censoring times. Partial crude probabilities consider the probability

of dying by time t from one of a subset of possible causes.
A fundamental result in the theory of competing risks is that on the

basis of the sample Ti’ 61, i=1, ..., n, it is impossible to tell whether

ip— P : i3—13

D
P{T <t oo, Ty <t } = le P{T, .<t.}

or whether the failure times Til’ ceey Tip are dependent. Different proofs
of this result with varying conditions and degrees of rigor have appeared
over the years. See the papers by Berman, Altshuler, Tsiatis, Peterson, and

Langberg-Proschan~Quinzi.

References:

Chiang, Intro. to Stochastic Processes in Biostatistics (1968),

discusses the relationships betweenlcrude, net, and partial
crude probabilities in Ch. 11.

Moeschberger and David, Biometrics (1971), consider parametric
likelihood methods.

Gail, Biometrics (1975), is a review article.

Prentice, et al.,Biometrics (1978), review competing risks from

the hazard rate point of view.
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Berman, Ann. Math. Stat. (1963),

Altshuler, Mathematical Biosciences (1970),

Tsiatis, Proc. Natl, Acad. Sci. (1975),

Peterson, Stanford Univ. Tech. Report No. 13 (1975),

, Proc. Natl. Acad. Sci. (1976), and

Langberg, Proschan, and Quinzi, Ann. Stat. (1981), examine the

identifiability question.

C. Dependent censoring

Not much work has been done in the case where there is dependence between
the failure times and the censoring times. Some of the work on dependent
competing risks is relevant in this regard. Papers by Lagakos and Williams
give some general discussion and results.

References:

Wllliams and Lagakos, Biometrika (1977).
Lagakos and Wllllams, Blometrlka (1978).

Lagakos,‘Biometrics (1979).

DL Jackknlflng and bootstrapplng

Suppose that the parameter 6 is a functional T(F) of the d.f. F. 1In
-ménytlnstances B,.1is estlmated by substltutlng the sample d.f. Fn for F
in T , i.e., § = T(Fn) .. For a sample Yi5 eees ¥ iid according to F ,

the jackknifed estimate O of 0 is defined as follows:

D1
]
=R

where ) , = T(F ) is the estimate of © with the ith observation VY,
-1 n-1,-1 i

deleted from the sample.
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When no censoring is present, it has been established that for suffi-

ciently smooth T

)
1 n,x =.2
/n(n—l) Zl(ei_e)

For confirmation of (18) in a variety of circumstances see Miller's 1974

2 §0,1) . (18)

review paper. Miller has also shown that (18) holds for randomly censored
data with 6 = T(F) where F is the PL estimator.
The smoothness in T necessary for (18) to hold is connected with the

smoothness of the influence function

T((1-€)F + Edy) - T(F)

IC(y;F) = lim
>0 €

where 6y is the d.f. which puts mass one at y . For uncensored data the
jackknife and influence function are related by
T((1-€)F + eéy) - T(F)

(a-1)(8-8_ ) = )
i~ € =-1/ (0-1),F=F_,y=y,

For censored data Reid has worked out the influence functions (i.e., partial

derivatives with respect to Fu and Fc) for a function of the PL estimator.

Efron's bootstrapping is accomplished in the following manner. Let
* * ‘

Yl, ceny Yn be a sample with replacement from Yis eees Yy, when no cen-

x % * %
soring is present, and with censoring let (Yl,6l), voos (Yn,ﬁn) be a sample
% %
with replacement from (yi,Gl), eees (yh,Gn) . Then Fn or F are the
bootstrap sample distribution function or PL estimator, respectively, and

~k * *
8 = T(Fn) or T(F ) . This sampling procedure is repeated N times to

136



Ak ~k %

produce g;, vees GN . The empirical distribution of 91, cens GN is used
to approximate the distribution of 8 . More specifically, with pivotal
quantities the empirical distribution of é* - ® 1is used as an approxima-
tion to the distribution of 6-08.
References:
Miller, Biometrika (1974), reviews the jackknife for uncensored
data problems.
, Stanford Univ. Tech. Report No. 14 (1975), establishes the
validity of jackknifing the PL estimator.
Reid, Stanford Univ. Tech. Report No. 46 (1979) or Apn. Stat. (1981),
derives the influence functions for the PL estimator.
Efron, Ann. Stat. (1979), introduces bootstrapping for uncensored
data problems.

, Stanford Univ. Tech. Report No. 53 (1980), studies boot-—

strapping censored data in general and the median in particular.
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IX. Problems

(:) Prove that the gamma distribution has IFR for o > 1 and DFR for o<1 .

Answer:
00
j XOL—l e_)\xdx
1 It
= — - ]
A(t) £ 1 o At
* 1 =A(x-t)
=[ @Y e  ax
t
® Y
= J 1 +-%)@_ e "Ydu . (change of variable: u=x-t).
0
If o>1,
u,0~-1 . . .
(1 +-E) is decreasing in t ,

so A(t) dis increasing. For o < 1 the integrand is increasing in t so

A(t) 1is decreasing.
(:) Derive the Fisher information for one observation from an exponential
distribution with Type I censoring.

Answer:

Let tc be the fixed censoring time. The log of the likelihood is
§log A -8 Ay - (1-8)A £, -

Differentiating twice with respect to A one gets

_ 8
12
so the Fisher information is
-t
-1 =L =L (1-
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(:) Derive the sample information matrix for the Weibull distribution under

random censoring.

Answer:

From

page 20,
9 _ Eg T oa
By log L = Y Zl Yy
3 M ‘ T a
Yo log L = o + E log L € izl vi log ¥y o

The sample information matrix at (y,a) is given by

a2

ayz

2 7 r.1 n h
8]
—= log L log L = n Z y.(log y.)
9y da Y2 u 121 i i
2 n
1 2
—a—logL ~n +y ) 3 (log v.)
2 2 "u . i i
3a 3 L o i=1

(:) From February 1972 to February 1975, 29 severe viral hepatitis patients

satisfied

the admission criteria for a 16 week study of the effects of

steroid therapy at the Stanford, VA, and Santa Clara Valley Hospitals and

were rando

mized into either the steroid or control group. The survival

times (in weeks) of the 14 patients in the steroid group were

1, 1, 1, 1+, 4+, 5, 7, 8, 10, 10+, 12+, 16+, 16+, 16+ .

Assume an exponential distribution S(t) = exp(-At) .

(a)

(b)

(e)

Estimate A by maximum likelihood and construct an approximate
95%Z confidence interval.

Estimate S(16) and construct an approximate 957 confidencé
interval.

Estimate the median survival time and construct an approximate

957% confidence interval.
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Reference:

Gregory et al., New England Journal of Medicine (1976).

Answer:

(a) From page 16,

From page 19,

log X a N(log X, i%) .
u

Then a 95% C.I. is given by

(X exp(—Z.OZS//E;), X exp(Z.Ozsl/E;)) = (.031,.136) .

(b) S(16) = exp(-% x 16) = .355 .

A 957 C.I, is given by

(e=+136%16  -.031X16) _ (113 6oy

(c) Emed = (log 2)/X = 10.69 .

A 95% C.1I. is given by

((log 2)/.136, (log 2)/.031) = (5.097,22.36) .

(:) For the severe viral hepatitis data compute the Kaplan-Meier product-
limit estimate of the survival function. Graph it and the survival func-
tion estimated under the exponential assumption on the same log X linear
graph paper. Do you think the assumption of an exponential distribution

over the 16 week interval is justified?
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Answer:

é 1 0<t<1
11/14 = .786 1<t<5
~ 11x8/14x9 = .7 5<t<7
s(t) = ﬂ for
11x7/14%x9 = .61 7<t<8
11x6/14x9 = ,524 8<t<10
\11x5/14x9 = 436 10 < t < 16
The graphs follow.
1 .
91 \\
.8+ 3
T4
6| \\
05 -+~
4l ~ 2
. _ Sem(E)
P{T>t} A
34 e—>\t
21
.1
:_ ; : : : = : : : >
0 2 4 6 8 10 12 14 16 18
t



"Democratic" goodness of fit results: out of 21 student papers, 15 were

in favor of the exponential, 5 were not, and 1 did not answer.
For the life table from Cutler and Ederer (Table 1, p. 31) compute the
approximate standard error of §(5) .

Answer:

Using Greenwood's formula

e

Var (8(5)) & (.44)2 [1 47 + >

16.5(116.5-47) ~ 51.5(51.5-5)

2 2 0
+ 30.5(30.5~2) + 16.5(16.5-2) + 7(7-0) | °

.003608 ,
SO

SE(S(5)) = .06 .
@ For the Embury et al. length of remission AML data (Example, p. 37)
compute the app;roximate standard error of §(24) in the maintained group.

Answer:

Using Greenwood's formula

(6><9 )2 1 1 1

Var(8(24)) = T8 + +

1
(Toxiz t ox10 T 738 T ex7) °

I

.02329

>

SO

SE(S(24)) = .1526 .

Show that in the proof that the PL estimator is the GMLE, the maximum of
1-8

n § n R
(1) (i)

I p, ( )

i=]1 1 jZi pJ
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is attained for

j=1
Answer:
Let
P.
Ai = = , i=1,...,n.
! »,
= 7
_ n n n -
Then, since 1 - Ai = Zj=i+1 pj/Zj=i pj and Zj=1 pj 1, we have
E i-1
p. = II (1 -21)),
j=i J j=1 J
and since An =1, we get
n G(i) n l_(S(:‘L) n G(i) i-1
T p, ( ) p.) -1 AP a-a,
1=1 j=i J i=1 j=1 3
n-1 ¢ s
=1 AW @-ayt,
. i i
i=1

It is well known from binomial sampling theory that each product is maxi-

mized by

Hence,
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Prove that the redistribute-to-the-right algorithm gives the Kaplan-

Meier product-limit estimator. Assume no ties.

Answer:

There are two principal ways of proving this result.

(1) With the redistribute-to-the-right algorithm, all points y(i) s
censored or uncensored, initially have equal mass 1/n . The algorithm
moves from left to right through the order statistics. When it reaches
y(i)— » all the remaining points y(i), y(i+1)’ coes y(n) have equal mass
on them due to the way the algorithm operates. Suppose the total remaining
mass is g(y(i)-) . By the equality of the masses Y (1) has

S(y(i)—)/(n—i+l) assigned to it, which it will keep if it is uncensored.

If it is censored, this mass is distributed to the right.

N

Since the PL estimator S starts at 1 as does S and has jumps of
sizes S(y(i)—)/(n—i+l) at the uncensored observations and zero at the
censored observations, the two estimators are identical.

(2) For the Kaplan-Meier estimator

A(i) = S(Y(i)"') - S(Y(i)) s

i-1 ., O, i . 6,
. n~-j+1 .. n-j+l ?
= j=1
_ lﬁl ( n—-1 )6(j) 6(1)
j= n-j+1 n-i+l °?
- iil (n—j+l)_6(j) L1, n o D-it2 6(i)
j=1 n~j n n1l  °°° 1 n-i+l ?
S a0
- e, :
1 M
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Let j1 < j2 < vaa < ji be the indices of the censored observations
which precede vy (1) ° For the redistribute-to-the-right algorithm the mass

assigned to Y (1) if 6(1) =1 is

- 1 1 1 1
Ay =10 +—/])1+ - ... (1 + -
@ "R R AT e AT
= ; I[ ( = ) )
=1 ™

)

and if 6(3‘.) =0, A(i) = 0 . This is identical to A(i) above, so the

redistribute-to-the-right algorithm gives the PL estimator.

Given that for the PL estimator §(t)

. . s(ty) 8(t)) (1°2 4R (s)
ACov(S(t)),5(t,)) = ——— f —,
n 0 (1-H(s))
show that for ﬁ = f: S(t)dt
AVar()) = r — L (r S(t)dt)2 dF (s)
B. ® o (1-u(s)? Vs u
Answer:
Var(p) = E(ﬁz) - (E(ﬁ))z >
( Q0 00 ~ ~ (o0 2
=E J J S(t,) S(t.) dt. dt ) - E([ §(t)dt) ,
o Jo 1) PRl €Fp €5 0
= I J Cov(§(tl),§(t2))dtl dt2 .
0’0 .
Py SO
n 1 00 40O ) tlAtZ dFu(S)
v AVar(u) = -—f f S(t,) s(t,) J —— dt, dt
mlodo Y % o @emesn? 2
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By interchanging integrals (applying Fubini's theorem)

oo}

m_____l____ Im S(t.)dt f S(t,)dt, dF (s)
J0 (l—H(s))2 s o s e

B

AVar(ﬁ)

I
=R

o] 1 foo} 2
[ ([ swae) e
0 (1~H(s)) s

(:) For the Embury et al. AML data in the non-maintained group (p.37), i.e.,
5, 5, 8, 8, 12, 16+, 23, 27, 30, 33, 43, 45 weeks,

compute (a) ﬁ and (b) Vgr(u) .

Answer:

(a) The Kaplan-Meier estimator §(t) is given by

t l[0,5>us,8>|[8,12>|[12,23>|[23,27>![27,3om30,33>l[33,43)|[43,45>|[45,°°>

SO
0= r S(t)dt ,
0
= 1x5 + %—8«3 + 1—82><4 + —17—2><11 + —l-%x%xl; +
+ I%X%XB + —l—zz—x—g'—x3 + I%X%Xlo + %x—é—xz ,

22.71 .
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A A ® 2 dy
(b) Var(u) = } S(t)dt ,
(n.-d.)
u y(i) ii
= (17.70)% =2+ (15.21)% =2 4 (12.54)% 1=
’ 12x10 10x8 8x7
+ (6.125) 6><5 + (4.18)2 5><4 + (3.01)2 4><3
+ (2.14)% 3x2 + (.19)° 2><1 )
= 17.47 .

(:) For the Gregory et al. severe viral hepatitis data the steroid (I)
and control (II) groups survival times (in weeks) are

I: 1, 1, 1, 1+, 4+, 5, 7, 8, 10, 10+, 12+, 16+, 16+, 16+ ,

II: 14, 2+, 3, 3, 3+, 5+, 5+, 16+(8) ,
with m= 14, n = 15 . Compute

(a) the Gehan statistic,

(b) its permutation variance, and

(¢) the normalized statistic and P-value.

Reference:

Gregory et al., New England Journal of Medicine (1976).

Answer:

*
The table in which the U  scores are computed is
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(a)

(b)

(c)

Z Group #<Z  #>Z U

1(3) I 0 26 -26(3)
1+ I 3 3
1+ - II 3 3
2+ 11 3 3
3(2) I 3 21 -18(2)
3+ 1I 5 5
bt I 5 5

5 I 5 18  -13
5+(2) 11 6 0 6(2)
7 I 6 15 -9

8 1 7 14 -7
10 I 8 13 -5
10+ I 9 0 9
12+ I 9 0 9
16+(3) 1 9 0 9(3)
16+(8) 11 9 0 9(8)

The Gehan statistic is
ZU*=59.

Its permutation variance is

14x15 z * 2
(U )" = 1086.72 .
29x%x28 I.II
The normalized statistic is
—32 __ _1.79,
v1086.72

which corresponds to a one-sided P-value of
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(:) For the Gregory et al. severe viral hepatitis data (p. 147) compute
(a) the Mantel-Haenszel statistic'and its associated P-value, and
(b) the Tarone-Ware version of the Gehan statistic and its associated

P-value.

Answer:

As on page 74,

ml(n-ml) n, n

1
z o my n; a EO(A) a—EO(A) n(a—Eo(A)) 3 n_(l-";r) nl(n-nl)
1 29 3 14 3 1.448 1.552 45 2.786 .2497 210
3 23 2 10 © .869 ~.869 =20 1.909 . 2457 130
5 19 1 9 1 474 .526 10 1 .2493 90
7 16 1 8 1 . 500 . 500 1 .2500 64
8 15 1 7 1 467 .533 8 1 .2489 56
10 14 1 6 1 .428 572 1 . 2449 48
o
(a)
sum of a—EO(A) columm
MH = ,
m, (n-m, ) n n
V/sum of (—AL———¥£— column times 1 (1-——1) column)
n-1 n n
=._Z;§li_ = 1.916 ,
v2.1578

so the one-sided P-value = ,027 .

(b)  Let UTW denote the Tarone-Ware version of the Gehan statistic.

sum of n(a—EO(A)) column
U =

W ’
ml(n—ml)
sum of (——;;ﬁj—— column times nl(n—nl) column)
=—22 _ _ 1,786 ,
v1091.23

so the one-sided P-value = .037 .
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(:) As a prototype problem, consider the following five points from the

Stanford heart transplant data:

Mismatch Score (X) Survival Time (Y)
2.09 54
.36 127+ -
.60 297
1.44 389+

91 1536+

(a) Test the hypothesis HO: B =1 in the proportional hazards model

by calculating the P-value associated with the Cox statistic

3 2 -
(gé‘ log Lc (l))
52 '
- —log L_(1)
382 c <

(b) Compute the Tsiatis/Link estimate of S(t;x) for x = 1.5 and

0 <t <297 wusing B = 1.

®
Answer:

(a) Let
i: 1 2 3 4 5
xi: 2.09 .36 .60 1.44 .91 .

From the expression at the bottom of page 91

5 X, 5 X,
Z X, e J 2 X, e J
i 16 L (1) = + - j=l - - i=3 ’
3 “°8 “¢ i R 5 x, 5 x, °
Y e ) e
j=1 j=3
= ,0965 .,

From page 92
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5 5 X 3 x.\2 5 x 5 x,.\2
2 I e ] ox et [ Red (]
- teg L, = B — - e I [
o8 3 h| h| h|
} e l e 1 e ] e
j=1 j=1 =3 =3
= ,5110 .

Thus,

3 2
(§§ log Lc(l))
_ 82
-—3 log Lc(l)
a8

and, since Xi(.9) = ,0158 , the P-value is approximately .9.

= .018

(b) The Tsiatis estimate (see page 99) is

(
1 for 0 <t <54,
~ _ _.—__l—_— _
AO,T(t) -{ 5% .0554 for 54 <t < 297,
I e’
j=1
1 1
5 x + 5 = 1727 for 297 =t ,
. 2 e J z e J
j=l j=3
s0
(1 for 0 <t <54,
) A, T(t)e1‘5
Sp(t31.5) =e *° =( .78 for 54 <t <297,
46 for t = 297

\ .
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The Link estimate (see pages 99 and 100) is

.0554
55 ¢ for 0 <t <54,
by, .(0) = |
.1727-.0554
T 297-54 (t-54) + .0554 for 54 <t < 297 ,
so
N 1.5 e—'0046t for 0 <t <54,
~ —Ao L(t)e ’
SL(t;l.S) =e =
877 e *00228 £ 54 <t < 297 .

(:) For the Embury et al. AML data

Maintained Group

9, 13, 13+, 18, 23, 28+, 31, 34, 45+, 48, 161+

Non-Maintained Group

5, 5, 8, 8, 12, 16+, 23, 27, 30, 33, 43, 45

compare the two groups by
(a) the Gehan statistic and the Mantel permutation variance,
(b) the Mantel-Haenszel statistic, and
(c) the Tarone-Ware version of the Gehan statistic.

In each case obtain the normalized statistic and its associated two-

sided P-value.

Answer:

(a) For the computation of the scores needed to perform the Gehan

statistic the following table is useful.
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Z Group #<z #>z U

5(2) NM 0 21 -21(2)
8(2) NM 2 19 ~17(2)
9 M 4 18 ~14
12 NM 5 17 -12
13 M 6 16 -10
13+ M 7 0 7
16+ NM 7 0 7
18 M 7 13 -6
23 M 8 11 -3
23 NM - 8 11 -3
27 NM 10 10 0
28+ M 11 0 11
30 NM 11 8
31 M 12 7
33 NM 13 6
34 M 14 5 9
43 NM 15 4 11
45 NM 16 3 13
45+ M 17 0 17
48 M 17 i 16
161+ M 18 0 18
The Gehan statistic is
] U =-50,
NM
and the Mantel permutation variance is
22 7 wH -2,
M,NM
so the normalized statistic is
=30 _ _1.656 ,
V912

which corresponds to a two-sided P-value of .098.
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(b) and (c) As in problem @:

z n om mny a Ey (A) a—EO(A) n(a—E0 (A)) 1 —n-(l ) n; (n—nl)

23 2 11 O .9565 -.9565 =22 1.909 «2495 132

21 2 11 0 1.048 -1.048 =22 1.9 L2494 110
9 19 1 11 1 .579 .42 8 1 .2437 88
12 18 1 10 O .555 -.555 -10 1 .2469 80
13 17 i 10 1 .588 412 7 1 .2422 70
18 14 1 8 1 .571 .428 6 1 .2449 48
23 13 2 7 1 1.077 -.077 -1 1.83 .2485 42
27 11 1 6 O .545 -.545 -6 1 <2479 30
30 9 1 5 0 .555 -.555 -5 1: .2469 20
31 8 1 5 1 .625 .375 3 1 .2344 15
33 7 1 4 0 .571 -.571 ~4 1 . 2449 12
34 6 1 4 1 .667 .333 2 1 .2222 8
43 5 1 3 0 .6 -.6 -3 1 . 2400 6
45 4 1 30 .75 -.75 -3 1 .1875 3
48 2 1 2 1 1.0 0 0 1 0 0

The Mantel-Haenszel normalized statistic is (see Answer to problem @)

-3.69

= -1.84 ,
/E.6072

so the two-sided P-value = .066.

The Tarone-Ware version of the Gehan statistic is (see Answer to

problem @ )

=50

= -1.65 ,
V/917.97

so the two-sided P-value = .099.

Prove that the numerator in the Tarone-Ware version of the Gehan sta-

tistic (i.e., Z ni(ai-EO(Ai))) equals the numerator of the Gehan statistic
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as defined by Gehan (i.e., U = ZZUij) s except possible for a factor of -1.

Allow for ties.

Answer:
From page 65
min
U=k§1 U I(ke€ 1),

where

*

U = )

L=
24k

Upp 2

*
so if the observation with label k in sample 1 is uncensored, then Uk

is equal to the number of uncensored observations before it minus the number

of observations after it.

o k=1
Uy = j=z=l mey =y -mq)

k
L m,

= 1T g (see page 72 for notation).
i=1

*
On the other hand, if the observation k is censored, then Uk is the

number of uncensored observations before it.

k
*
U = ) m,, .
k j=1 il
Therefore,
T 1 T (1
U= m,, I(keI,)+ ( m, ., - )I(kel),
k=1 j=1 It VT \E T 1
c u

where ¢ and u mean the sums are performed over censored and uncensored

observations, respectively.
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Thus,

mn k mn
U= kzl jZl 51 I(k € 1) - kzl n Ik €I,68, =1,
mn mn mn
) 'Zl mjl kzj Lk € Il) - kzl noa
mn
= jzl (m.jlnf:i1 - njaj) ,

= E (mjlnjl - njaj) s

= 'E n(ay = Eg(a)) ,

where the next to the last equality follows from the fact that m.j

(hence aj), which is the number of uncensored observations ét zj , is
zero if zj is a censored observation. (Recall the convention that ties
between censored and uncensored observations are broken by considering the

censored observations to be larger.)

C:) Show that Mantel's permutation variance for the Gehan statistic, di-

vided by N° = (mtn)3 , i.e.,

Lo« mn awhH?,
N3 (rtn) (m+n-1) izl i

converges to
A(1-1) f (1-H(t))? du (t)
O u

*
as N + o, m/N > A under the null hypothesis Hy:F; = Fy; G, = G, , where
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t t
H(t) = P{Zit} = f (l-—G(U))dF(u) + [ (l—F(U))dG(u) ’
0 0
t
H (t) = P{Z<t,z=1} = I (1-G(u))dF(u) ,
0

and F and G are continuous.

Answer:
Let
A l N
H() =§ ) I(z4<0)
i=1
~ l N
B (£) =5 )L I(z;<t,g,=1) .
i=1
Then,
#(uncensored obs. < Zi) - #(obs. > Zi) if ;=
%
U, =
i
#(uncensored obs. < Zi) if ;=
N Hu(Zi—) - N(l—H(Zi)) if Ci =1,
N Hu(Zi—) if Ci =0,
= N[ (2,-) - t,(-Rz )] .
Consequently,
N N
1 z * 2 1 2.0 ~ 2
= ) (U ==x% ] NH (z,-) - T, (1-H(Z, )] ,
N3 io1 i N3 121 u i i i
N N
_ l_‘ A2 2_ ~ A
=5 1 B2 - 1ty H (20 Q-H(Ez))
i=1 i=1
N
1 ~ 2
+5 L 5 (-HGE T,
i=1
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= JO ﬁi(t—)dﬁ(t) -2 JO ﬁu(t-)(l-ﬁ(t))dﬁu(t)

+ J (1-f(£))2 afi (t)
O u

b

Since ﬁ(t) + H(t) and ﬁu(t) > Hu(t) uniformly in t as N =+ «
a.s., by the Glivenko-Cantelli theorem,it follows that as N - «

100

N o
1 *. 2 a.s. 2
= L ap® fo H (£)dH(E) - 2 f

H (t) (1-H(t))dH (t)
N® i=1 v v

0

+ J (1-8(e))? aH_(e)
0

Integration by parts gives

o]

Hz(t)(l—H(t))i + J H2(e)du(e)
u 0 0 u

1]

2 fo Hu(t)(l—H(t))dHu(t)

)
JO Ho(D)aH(t)

so the first two terms in the above limiting expression cancel. This,

together with

mn
(m+n) (m+n-1)

> k(l_x) s

establishes the result.
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